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Abstract. Current in-network programming protocols for sensor net-
works allow an attacker to gain control of the network or disrupt its
proper functionality by disseminating malicious code and reprogram-
ming the nodes. We provide a protocol that yields source authentication
in the group setting like a public-key signature scheme, only with sig-
nature and verification times much closer to those of a MAC. We show
how this can be applied to an existing in-network programming scheme,
namely Deluge, to authenticate code update broadcasts. Our implemen-
tation shows that our scheme imposes only a minimal computation and
communication overhead to the existing cost of network programming
and uses memory recourses efficiently, making it practical for use in sen-
sor networks.

1 Introduction

The process of programming sensor nodes typically involves the development
of the application in a PC and the loading of the program image to the node
through the parallel or the serial port. The same process is repeated for all the
nodes of the sensor network before deployment. However, after deployment, there
is often the need to change the behavior of the nodes in order to adapt to new
application requirements or new environmental conditions. This would require
the effort of re-programming each individual node with the updated code and
relocate it back to the deployment site. Network programming saves this effort
by propagating the new code over the wireless link to the entire network, as soon
as that code is loaded to only one node. Then, nodes reprogram themselves and
start operating with the updated code.

As network programming simplifies things for legitimate users, it also sim-
plifies things for attackers that want to disrupt the normal operation of the
network or operate them for their own advantage. In currently deployed net-
works the nodes do not authenticate the source of the program; therefore an
attacker could easily approach the deployment site and disseminate her own
malicious/corrupted code in the network.

This possibility makes sensor networks deployments susceptible to outsider
attacks. Besides loosing control of the network or getting back altered measure-
ments, it is even possible that the network is reprogrammed with malicious code
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that has the same functionality with the legitimate code but also reports data to
the adversary. In such a case legitimate users would never know that something
is wrong. Hence, it is important that the sensor nodes can efficiently verify that
the new code originates from a trusted source, namely the base station.

2 Problem Definition and Contribution

The goal of this work is to provide an efficient source authentication mechanism
for broadcasting a program image from the base station to the sensor network.
While the authentication mechanism should still allow efficient dissemination
procedures, such as pipelining, it should also block malicious updates as early as
possible.

By now, what have been studied extensively in sensor networks are point-to-
point authentication mechanisms. Using a shared key, two nodes can exchange
authenticated messages by appending a message authentication code (MAC) to
each packet, computed using that key. Due to its low computational overhead,
MACs are an attractive tool for securing communication in sensor networks.
However, in order to use it for broadcast authentication, all nodes should share
the same key. But then, anyone who could physically capture a node and re-
trieve that key could impersonate the source. A solution to that problem has
been given by Perrig et al. in [1], which is based on delayed disclosure of keys by
the sender. The shortcoming of this approach is that it requires time synchro-
nization between the nodes, while current dissemination protocols for in-network
programming do not place such bounds.

The most natural solution for authenticated broadcasts is asymmetric cryp-
tography, where messages are signed with a key known only to the sender. Every-
body can verify the authenticity of the messages by using the corresponding pub-
lic key, but no one can produce legitimate signed messages without the secret
key. However, public key schemes should be avoided in sensor networks for mul-
tiple reasons: long signatures induce high communication overhead of 50 - 1000
bytes per packet, verification time places a lower bound on the computational
abilities of the receiver, and so on.

However our goal is not to authenticate just messages, since here we are
dealing with streams, rather than simple messages. The size of program images
that will be sent over the radio is usually between a few hundreds of kilobytes
and a few thousands. This fact can allow the use of public key schemes if we
manage to reduce the size of the public key and also make signature size to
be only a small percentage of the total transmitted stream. Furthermore, if we
reduce the verification time down to the order of that of a symmetric scheme,
we will have proved that public key cryptography is an attractive solution for
such problems.

Therefore, our goal and the contribution of our work is to provide an efficient
authentication scheme for a finite stream of data based on symmetric cryptog-
raphy primitives while at the same time having the properties of asymmetric

cryptography.
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2.1 Design Goals

The solution that we present in this work was designed having the following
requirements in mind:

1. Low computational cost. As we mentioned above, asymmetric cryptogra-
phy involves high computational cost and is not preferable for use in sensor
networks. Our scheme should impose public-key properties but at the same
time minimize the computational cost for sign verification at the receivers
(sensor nodes).

2. Low verification time. The rate at which a code segment is transmitted
to the receiver should not be delayed.

3. Low communication overhead. The signature transmitted with data
should constitute a small percentage of the total bytes, imposing a low com-
munication overhead.

4. Low storage requirements. Any cryptographic material that needs to be
stored in the sensor nodes should be as small as possible, given their limited
Memory resources.

Moreover, since we are providing an authenticated broadcast protocol we
need to assure the following:

1. Source authentication. A mote must be able to verify that a code update
originates from a trusted source, i.e., the base station. This means that
an attacker should not be able to send malicious code in the network and
reprogram the nodes.

2. Node-compromise resilience. In case an attacker compromises a node
and read its cryptographic material, she must not be able to reprogram any
other non-compromised node with malicious code.

Even though we do not address protection against DoS attacks, our protocol
must provide some resilience against such attacks in the following sense: In case
an attacker is trying to transmit malicious code to the network, any receiving
node should be able to realize this as soon as possible and stop receiving it or
forwarding it to other nodes. This means that nodes should not authenticate the
code after its reception but rather during that process.

3 Related Work

A recent work that proposes a solution for secure dissemination of code updates
in sensor networks is described in [2]. The authors first suggested the use of hash
chains to efficiently authenticate each page of the program image. However, they
make the assumption that there exists a public key scheme to authenticate the
initial commitment of the hash chain, without giving any specific solution.
Another work on the same problem is described in [3], where the authors set
the additional goal of DOS-resilience and therefore they need to authenticate
each packet separately. To do that they construct a signed hash tree scheme
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(similar to a Merkle tree) for every page in the program image, and they transmit
these trees before the actual data. This increases considerably the overhead of
packets sent and received by the motes. Moreover, due to memory constrains in
the motes, these values need to be stored and loaded from the EEPROM, which
is a very energy consuming operation.

In [4] the use of a reverse hash chain computed over the program pages
is also used, as in [2] and in our scheme. However the authors use the RSA
digital signature scheme for signature verification at the motes, which we have
excluded from our design goals. On the other hand, an authentication scheme for
broadcasting messages in a sensor network that uses only symmetric primitives
is described in [5]. The authors keep the memory and computational overhead of
their algorithm efficiently low. However they are concerned about the problem
of authenticating broadcasted queries, which are normally less harmful messages
with very small size, so their requirements are different than in our case.

4 Overview and Useful Tools

Throughout this paper we are considering Deluge [6] as a paradigm of in-network
programming. However other data dissemination protocols like MOAP[7], MNP|[8]
and INFUSE[9] are following similar principles, and the algorithms presented
here should be applicable to those protocols as well.

Deluge propagates a program image by dividing it first into fixed-size pages
and then using a demand-response protocol to disseminate them in the network.
As soon as a node receives a page, it makes it available to any of its neighbors
that also need it. At the same time it sends a request to the sender in order to
receive the subsequent pages.

To sign a program image we are following the approach by Gennaro and
Rohatgi in [10] for signing digital streams. What they proposed is to divide the
stream into blocks and embed some authentication information in each block.
In particular, their idea is to embed in each block a hash of the following block.
In this way the sender needs to sign just the first block and then the properties
of this signature will propagate to the rest of the stream through the “chaining”
technique.

So, given a program image divided into N fixed-size pages Py, P, ..., Py
and a collision-resistant hash function H, we construct the hash chain

hi:H(Pi+1|hi+1), ’LZON—2

and we attach each hash value h; to page P;, as shown in Figure 1. For the last
hash value, hy_1 = H(Py). According to this scheme, we need to authenticate
only hg, which we will sign and release before the transmission of any page.
The signing and verification of hy constitutes the main overhead of the security
protocol, which our goal is to minimize.

Towards this goal, our main design principle is based on the fact that real
world software updates in sensor networks do not constitute an every-day oper-
ation but rather they are performed occasionally. Therefore, we do not need to
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Fig. 1. Applying the hash chaining technique to the pages of a program image. Only
ho needs to be signed by the sender.

authenticate an unlimited number of broadcasts. We only need to be able to do
so for a sufficiently large number of times. This fact allow us to use one-time sig-
nature schemes, which exhibit fast verification times. Despite their name, there
exist one-time signature schemes that can be used r-times instead of just once,
r being a design parameter adjustable to our needs.

4.1 One-time Signature Schemes

One-time signatures were first introduced in [11, 12]. They are based on the idea
of committing a secret key via one-way functions, decreasing dramatically the
signing and verification time compared to asymmetric primitives. In the rest of
the paper we will describe an efficient one-time signature scheme appropriate
for sensor networks and how this can be used for authenticating broadcasts of
program images. We believe this technique to be interesting on its own, apart
from its usage in devices with limited capabilities.

In one-time signature schemes the signer is generating a set of secrets prior to
signing a message along with a set of public commitments to this set which are
given to the verifier in an authenticated manner. To sign a message, the signer
reveals a subset of these secrets, which is determined by the message content.
The verifier authenticates the message by checking the correspondence of these
secrets to the commitments that were given earlier. Since a part of the signer’s
secrets is now revealed, a new key must be generated for the next message.

Although one-time signatures have been known for a relatively long time,
they have been considered to be impractical for two main reasons: First, they
can be used to sign a message only once and then a new key must be generated;
Second, the signature size is relatively long in comparison with common public-
key signatures and MACs.

Recently, this area was revisited and some one-time signature schemes were
proposed that seem attractive for sensor networks, mainly because they allow
the reuse of the same key more than once, but also because they try to reduce
the verification time. For example, Reyzin and Reyzin [13] introduced HORS,
an r-time signature scheme with efficient signature and verification times. This
scheme was further improved by Pieprzyk et al. [14]. Both of these “r-times
signatures” can sign several messages with the same key with reasonable security
before they can get compromised.
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However there are still some drawbacks that prevent us from applying those
schemes to sensor networks. The main one is the size of the public/secret key
pair and the size of the generated signatures. The public key must be stored on
all sensor nodes so its size must be minimized as much as possible. Moreover,
the signature is transmitted by the radio and received by nodes, which have to
verify it. The larger the signature size, the more energy a node has to spend in
order to receive it and verify it.

4.2 Merkle Trees

As we described so far, all verifiers need an authenticated copy of the public
commitment to the one-time signature in order to verify the validity of that
signature. Merkle [15] introduced a scheme that enables the verification of a
large number of public commitments using low storage requirements, i.e. a single
hash value. This is done by using a technique called Merkle hash tree. A Merkle
hash tree is a complete binary tree where each node is associated with a value,
such that the value of each parent node is the hash function on the values of its
children:
v(parent) = H(v(left)|v(right))

where v() here stands for the value of a node and H for a hash function.

If we put the public commitments to the leaves of a Merkle tree, then the root
can serve as a short public commitment to all the one-time signatures. Then we
only need to give the root to the verifier in a secure and authenticated way. To
verify a one-time signature the receiver does not need to know the whole Merkle
tree. Instead, the only thing that the signer needs to provide to the verifier is the
authentication path, i.e., the values of all the nodes that are siblings of nodes on
the path between the leaf that represents the public commitment and the root.

Given that authentication path, a leaf may be authenticated as follows: First
apply the one-way hash function to the leaf and its first sibling in the path,
then hash the result and the next sibling, etc., until the root is reached. If
the computed root value equals the published root value then the signature’s
commitment is authentic.

4.3 HORS

Our open question so far is the efficient signing of the first value hg of the
hash chain. This will enable the authentication of the whole chain and therefore
the authentication of the program image. To sign hg we will modify the HORS
scheme so that the sizes of the signature and the public key are reduced to a
magnitude proper for use in sensor networks. Here we briefly review the HORS
scheme.

First, the signer generates a secret key SK that consists of ¢t random values.
The public key PK is computed by applying a one-way function f to each of the
values of the secret key and then distributing them to the intended receivers in
an authenticated way. A message m is signed according to the following steps:
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1. Use a cryptographic hash function H to convert the message to a fixed length
output. Split the output into k substrings of length log, ¢ each.

2. Interpret each substring as integer. Use these integers to select a subset o of
k values out of the set SK.

3. This o is the signature of the message m.

The verifiers recompute the hash value of the message m, re-produce the same
indices and pick the corresponding values of the set PK (instead of SK). Then
they verify that the hash value of each member of the signature equals to the
corresponding member of the public key PK. The signature is accepted if this
is true for all k£ values.

Note that for each message that we sign, a part of the secret key is leaked
out. Some typical values for HORS are [ = 80, kK = 16 and ¢ = 1024. In this case,
assuming a hash output of 20 bytes, the public key will be 1024 x 20 = 20,480
bytes or 20 KB, which is not suitable for sensor nodes. Moreover, the security of
the scheme and the size of the public key are directly related to the number of
messages that we can sign. For the above example, we can sign just 4 messages
with acceptable security, meaning 4 program image updates in our case. However,
to make the scheme practical this number must be higher.

Let r be equal to the number of messages that we allow to be signed with
the current instance of the secret key. For an analysis (see also [13]) we assume
that the hash function H behaves like a random oracle and that an adversary
has obtained the signatures of r messages using the same setting of secret/public
key. Then the probability that an adversary can forge a message is simply the
probability that after rk values of the secret key have been released, k elements
are chosen at random that form a subset of the rk values. The probability of
this happening is (rk/t)*. If we denote by X the attainable security level in bits,
by equating the previous probability to 27%, we see that X is given by

Y = k(logy t —logy k — logy 7). (1)

As an example, for t = 1024, k = 16 and r = 4 we get X = 64 bits of security.
For ¢t = 65536, k = 8 and r = 32 we get the same level of security but we can
sign a lot more messages with the same key. However, since the number ¢ of
PK values determines the public/secret keys sizes, it is directly limited by the
restrictions imposed by sensor networks capabilities. As a first step we can use
equation (1) to solve for ¢ for any desirable security level. Thus we get

t =25/ Fy, (2)

5 Our r-times Signature Scheme

The reason that makes HORS inappropriate for sensor networks is that the
public key grows unacceptably high if we want to sign more messages and keep
security at an acceptable level. So we need to effectively reduce the public key
size. One way to do this (also proposed in [16]) is to use a Merkle tree, which
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we discussed in section 4.2. Given the secret key values, we apply a one-way
function f to each one and we place the results to the leaves of the Merkle tree.
The root of the resulting Merkle tree is the public key.

Even though we have reduced the size of the public key down to a hash output
size, we increased the size of the signature to the size of the authentication path.
This also results in a corresponding increase to the signature verification time.
So, this solution is also not attractive for applications in sensor networks.

Our solution goes one step further and distributes the values of the secret
key into many Merkle trees, thus achieving a tradeoff between public key size
and signature size. First we show how this can be done.

Let f be an [—bit one-way function. The generation of the key pair is done
by the following algorithm:

Secret Key Generate ¢ random [—bit quantities for the secret key: SK =

(517 cee 7St)'
Public key Compute the public key as follows: Generate ¢ hash values (u1, ..., us),
where u; = f(s1),...,us = f(st). Separate these values into d groups, each

with ¢/d values. Use these values as leaves to construct d Merkle trees. The
roots of the trees are the public key of our scheme.

In this way we have reduced the public key size down to a few hash values
that constitute the roots of the Merkle trees. These values need to be passed to
all sensor nodes in an authenticated way. This can be done for example during
initialization of sensor nodes. Now, a message is signed according to the following
steps (see also Figure 2):

1. Use a cryptographic hash function H to convert the message to a fixed length
output. Split the output into k substrings of length log, ¢ each.

2. Interpret each substring as integer. Use this integers to select a subset o of
k values out of the set SK.

3. The signature of the message m is made up by the selected secret values
along with their corresponding authentication paths.

The verifiers recompute the hash value of the message m, re-produce the same
indices and pick the corresponding values of the set PK. Then they evaluate
each authentication path of the signature to reproduce the root of the Merkle
tree and compare it with the corresponding member of the public key PK. The
signature is accepted if this is true for all k£ values. The detailed description of
the algorithm is shown in Figure 3.

As an example, let’s apply to our scheme the same values we did for HORS,
ie., { =80, k = 16 and t = 1024, and assuming a hash output of 20 bytes. If
we construct 32 Merkle trees with 32 leaves each (so all 1024 secret values are
covered), we will get 32 roots of trees, i.e., 640 bytes that will constitute our
public key, compared to 20 KB we got from HORS. These values will provide 64
bits of security for » = 4 messages (images).

If we choose now [ = 80, k = 8 and t = 65536, and r = 32 we get the same
level of security. In this case, by constructing 64 Merkle trees of 1024 leaves each,
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Fig. 2. Signature construction for message m using multiple Merkle trees.

the public key will become 1024 bytes, which is still an attractive value for use
in sensor nodes.

5.1 Tradeoffs

The public key stored in each sensor node is given by the hash values residing at
the roots of the trees. The more the number of the trees, the bigger the public
key becomes but the smaller the signature size becomes. To see why, notice
that signature size depends on the length of the authentication paths, which
are ultimately related to the height of the Merkle trees. More trees means less
secret values per tree and hence smaller height. To find this tradeoff between
public/signature size let T' denote the number of trees. Hence the public key size
is simply
Spx = |h|T, (3)
where |h| is the output of the hash function in bits since every root contains a
hash value of its children. For example, |h| can be equal to 128 bits in the case
of MD5 or 160 bits in the case of SHA-1.
As the number of trees is T, there can be at most ¢/T values stored at
the leaves of each tree. Thus the height of each tree (and the length of each
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Key Generation

Input: Parameters [,k,t
Generate t random [-bit strings si, s2, ..., St
Let u; = f(s;) for 1 <i <t
Group t hash values u1,us, ..., u; into d groups of ¢t/d values
Place each group at the leaves of a Merkle tree, constructing d Merkle trees
Let wi,wa, ..., wq be the roots of the Merkle trees

Output: PK = (k,w1,wa,...,wq) and SK = (k, s1, S2,...,¢)

Signing
Input: Message m and secret key SK = (k, s1,82,...,5¢)
Let h = H(m)

Split h into k substrings hi, ho, ..., hi, of length log, t bits each

Interpret each h; as an integer i; for 1 < j <k

Let pi; = (si;, AP(s4;))), i.e. the secret ball along with its authentication path
Output: o = (fiy s figs - - - 5 Miy,)

Verifying
Input: Message m, signature o = (u}, ..., u}) and public key PK = (k, w1, ..., w:)
Let h = H(m)

Split into k substrings hi, ha, ..., hy, of length log, t bits each

Interpret each h; as an integer i; for 1 <j <k

Compute which Merkle tree corresponds to 4;: M; =14;/(t/d) for 1 < j <k

Hash the values in each uj, to produce the corresponding root w§w7
Output: “accept” if for each j,1 < j < k,w?vfj = wuy; “reject” otherwise

Fig. 3. Our proposed signature scheme. f is a one-way function and H is a hash
function. Both f and H may be implemented using a standard hash function, such as
SHA-1 or MD5.

authentication path) is simply log, t/T or X'/k+log,(kr) —log, T using equation
(2). The signature consists of k such authentication paths, where each path is a
sequence of hash values. Thus the signature size is given by

Ssig = |h|(X + klogy(kr) — klog, T). (4)

From this equation it should be obvious that increasing the number of trees T
(and hence the public key size) results in a decrease in the signature size.

This equation can be simplified further if we recall how the k secret values
are selected (Figure 2). The message m to be authenticated is first hashed to
obtain H(m), a value that is |h| bits long. Then these |h| bits are broken into k
parts, where each part references one of the secret values. Thus the number of
secrete values ¢t must be equal to 21"/ or equivalently

|h| = klog, t. (5)
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Combining with equations (2) and (4), we find that the signature size is given
by
Ssig = |h|(|h] — klogy T). (6)

In the same manner, the security level becomes
Y = k(|h|/k — logak — logar). (7)

In the figures below we tried to keep the public key size equal to approxi-
mately 1 KByte so that it fits well in the memory of typical Mica nodes. As-
suming h = 128, i.e. using MD5 to produce the hash values, we find that the
number of trees T should be equal to 64, by equation (3).

Security Level Signature Size
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Fig. 4. Signature size and security level as a function of k.

6 Implementation Details and Evaluation

We implemented our authentication protocol in order to measure its efficiency.
Our implementation was built on Deluge 2.0, which we slightly modified in order
to include our scheme. At the end we were able to download authenticated images
on the sensor nodes, and reprogram them by using Deluge. The whole security
mechanisms were kept transparent from the end users, unless they tried to inject
a corrupted or malicious program image.

In our implementation design we faced several issues, some of which we ad-
dress here. First of all, one primary goal was for a mote to be able to authenti-
cate each page separately and stop the downloading of the image as soon as a
non-authentic page is received. However, by that time earlier pages that passed
the verification procedure will have been propagated to the rest of the network
wasting energy of the motes. This may be considered as a kind of DoS attack, if
exploited properly by an adversary. However it is a price that must be paid in
order to support pipelining. If one is interested in optimizing the protocol from
a security point of view, then it must modify it to exclude the pipelining, so that
only complete images that have been authenticated can be further forwarded.
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Another issue to be considered here is the memory optimization of the pro-
tocol. While it is not possible to avoid storing the public key in the mote’s
memory, we can do so for the signature. This is because the signature is made
up by authentication paths and the authentication of each path can be done
independently by the others. Referring to Figure 5, the mote first receives the
hash value of Image 1. This will provide the indices to the public values. Then,
the first authentication path of the signature will be received. The verification of
that path evolves only a few hashing operations and a comparison of the result
with the corresponding public value. This can be done fast enough by the mote
(see Section 6.1) so that the path has been verified before the next path starts
coming in. So, only a temporary storing is needed, equal to the size of a path
(dependent on the height of the Merkle trees at the base station).

| h, | PathO0 | Path 1 | |Pathk| | Page 1 | h, | | Page N |
- /
~
Signature

Fig. 5. The order at which a mote receives the signature, the pages and their hash
values. Verification of the signature is possible by storing only one path at the time.

So the only extra memory requirement that we impose is the buffering of
the pages, since we want to compute their hash value and compare them with
the corresponding commitments in the hash chain. For example, the page size
in Deluge is 1104 bytes, which is a large percentage of the available memory in
a mote (usually at the order of a few kilobytes). Nevertheless, it is possible to
buffer one page of that size at the time, as long as we do not require any more
memory of that order, which is true for our scheme.

6.1 Evaluation

Following the discussion of Section 5.1, we used our secure version of Deluge to
measure the verification time of the signature attached to the program image.
Our implementation was done on the mica2 platform, which exhibits low mem-
ory capabilities (4 KB of RAM). For all of our experiments we set a security
level equal to 60 bits (although this can be modified accordingly), which is a
satisfactory value for most security applications.

For that security level, Figure 6(a) shows the verification time of the signature
for different number of Merkle trees T' (determining the public key size) and
different values of r (number of images that can be signed with the same keys).
So, for example, if we take K = 8 and want to sign r = 64 images using the
same secret-public key pair while keeping the public key size down to 1 KB
(i.e. T = 64), we get a verification time equal to 186.3ms. This is just the
computational time and does not include the time to transmit the stream. So,
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Fig. 6. Verification time and public key size as a function of T

it defines the computational overhead that our algorithm imposes on Deluge.
Notice also that this time uses standard implementations of hash functions, so
it can be improved even further using optimized code.

Figure 6(b) shows how the size of the public key changes as a function of the
number of Merkle trees T'. If the secret values are distributed over more Merkle
trees, the public key increases but the verification time decreases accordingly.
So, this is a tradeoff that must be decided at design time, depending on the
available memory on the sensor nodes, which will determine how big the public
key can be.

7 Conclusions

In this paper we presented an efficient and practical scheme for authenticated
in-network programming in sensor networks. Our solution imposes asymmetric
cryptography properties using symmetric cryptography primitives. It minimizes
the public key and signature sizes to values that are appropriate for sensor
networks. The verification procedure at the motes is also time and computational
efficient, since it involves only hashing and comparison operations. Our scheme
also provides node compromise resilience, preventing an attacker who captures
a node to reprogram any other node in the network. Furthermore, images are
authenticated at a per-page basis, which enables a node to stop the downloading
of a new image as soon as a page fails the verification procedure.

We implemented our solution and integrated it in Deluge, showing that it
can easily adapt to an existing in-network programming protocol. We tested our
secure Deluge version and measured the verification time of the signature at
the mote’s side. This showed that the computational overhead imposed by our
scheme is at the order of one to two hundreds milliseconds, which is very efficient
for applications running on sensor nodes.
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