
Arbitrary Code Injection through
Self-propagating Worms in

Von Neumann Architecture Devices
Thanassis Giannetsos1, Tassos Dimitriou1, Ioannis Krontiris2

and Neeli R. Prasad3

1Athens Information Tech.
19.5 km Markopoulo Ave.

Athens, Greece
2Computer Science Dep.
University of Mannheim

D-68161 Mannheim, Germany
3Department of Communication

Aalborg University
Fr. Bajers Vej 7A5, DK-9220,Denmark

Email: agia@ait.edu.gr, tdim@ait.edu.gr, krontiris@uni-mannheim.de, np@es.aau.dk

Malicious code (or malware) is defined as software designed to execute attacks on
software systems and fulfill the harmful intents of an attacker. As lightweight
embedded devices become more ubiquitous and increasingly networked, they
present a new and very disturbing target for malware developers. In this paper,
we demonstrate how to execute malware on wireless sensor nodes that are based
on the Von Neumann architecture. We achieve this by exploiting a buffer overflow
vulnerability to smash the call stack and intrude a remote node over the radio
channel. By breaking the malware into multiple packets, the attacker can inject
arbitrarily long malicious code to the node and completely take control of it. Then
we proceed to show how the malware can be crafted to become a self-replicating
worm that broadcasts itself and infects the network in a hop-by-hop manner. To
our knowledge, this is the first instance of a self-propagating worm that provides
a detailed analysis along with instructions in order to execute arbitrary malicious
code. We also provide a complete implementation of our attack, measure its
effectiveness in terms of time taken for the worm to propagate to the entire sensor

network and, finally, suggest possible countermeasures.

1. INTRODUCTION

Sensor nodes are deeply embedded wireless computing
devices without tamper-proof hardware due to cost
considerations. This, along with the fact that they
are deployed in unattended environments makes it
possible for an attacker to physically capture a node
and run unauthorized software on the device or extract
sensitive information like cryptographic keys [1]. Given
that sensor networks consist of hundreds or even
thousands of sensor nodes, several security protocols
have been based on the assumption that an attacker
can compromise and control only a small portion of the
network.

Recent advances in sensor networks research have
shown, however, that an attacker can exploit different
mechanisms of sensor nodes and spread malicious
code throughout the whole network without physical
contact. One such method is to take advantage of the
network programming capabilities of sensor networks,

which allow the dissemination of code updates through
wireless links and reprogramming of nodes after
deployment. Over-the-air programming (OAP) is a
fundamental service in sensor networks that relies
upon reliable broadcast for efficient code dissemination
and updates. However, it faces threats from both
external attackers and potentially compromised nodes.
For example, an adversary may easily subvert such
protocols by modifying or replacing the real code image
being propagated to sensor nodes, introducing malicious
code into the sensor network [2]. Nevertheless, such
mechanisms have been secured recently, allowing the
propagation of only authenticated program images
originating from the base station [3, 4, 5, 6].

Another method for the attacker is to exploit memory
related vulnerabilities, like buffer overflows, to launch a
worm attack. Since all sensor nodes execute the same
program image, finding such a vulnerability can lead to
the construction of self-propagating packets that inject

The Computer Journal, Vol. XXX, No. XXX, XXX

2 T. Giannetsos, T. Dimitriou, I. Krontiris, and N.R. Prasad

malicious code to their victims and transfer execution
to that code. If the malware is constructed such as it
resends itself to the neighbors of the node, the attacker
can compromise the whole network and quickly take
complete control of it. While this attack is extremely
dangerous, there has been very little research in this
area.

All previous work has concentrated on sensor devices
following the Harvard architecture, in which, even
though it is possible to construct propagating malicious
packets, an attacker cannot directly inject and execute
her own code inside the mote’s memory. This is due to
the characteristics of this architecture, since data and
code segments are physically and logically separated
not allowing the execution of instruction injected in the
data memory. Therefore, it is only possible to transfer
the program execution to already existed sequences of
instructions present in the program memory. But even
then, the injection process suffers from code size and
time limitations.

This is not true, however, for sensor devices following
the Von Neumann architecture. According to this
architecture, both instructions and data are stored
in the same memory space, allowing the attacker to
transfer execution control where the malicious packet
is stored. This allows the injection and execution
of arbitrary code that does not necessarily exist in
the mote’s memory. Several of the most popular
sensor node platforms today use microcontrollers that
are based on the Von Neumann architecture, like for
example the Tmote Sky [7], Telos [8], EyesIFX [9],
ScatterWeb MSB-430 [10] or even the SHIMMER
platform for medical applications [11]. Hence, it is
important to show how vulnerable these platforms
are against worm attacks and emphasize the need for
appropriate prevention measures.

1.1. Our Contribution

In this paper we present the design and implementation
of a self-propagating worm for wireless sensor devices
based on the Von Neumann architecture. It is the
first complete instance of such a worm containing full
technical details and all necessary code instructions.
In particular, we make three contributions beyond
previous work on code injection attacks.

First, we describe an implementation that further
advances already existing tendencies in the use of
“multistage buffer-overflow attacks”, in order to inject
and execute arbitrarily long code in sensor devices
following the Von Neumann architecture. In a
multistage buffer-overflow attack, an adversary sends a
number of specially crafted packets in order to inject
long blocks of code. This type of attack bypasses
any code size limitations and its effectiveness does not
rely on pre-existing instruction sequences in program’s
memory as opposed to any previous work in this area.
Second, we demonstrate how the injected malware can

self-propagate, that is be converted into a “worm”. This
is a serious threat since the attacker can compromise
the entire sensor network by infecting only one node.
Additionally, we put out the code instructions of the
sensor worm that an adversary needs to inject into a
node before spreading to the entire network. Finally,
we evaluate the efficiency of worm propagation derived
from a real network consisted of Tmote Sky sensor
devices. This assessment relates to the time needed
by the worm to reach 100% of sensors in a particular
neighborhood. However, it is also coupled with
extensive simulations that demonstrate the efficiency
of worm propagation in large scale networks. Previous
code injection approaches relied on the assumption that
injection can only be done byte-to-byte, resulting in
schemes that require an important amount of time.
This, however, may lead to possible detection of the
attack in progress.

Even though research in worms against several
types of networks has increased significantly over the
last years, existing literature in sensor networks is
quite limited. To the best of our knowledge, this
is the first instance of a self-propagating worm that
provides all the necessary tools that can be used
by an adversary, along with a complete experimental
evaluation of its effectiveness. We expect that our work
will be particularly useful in sensor network research
for showing the destructive impacts of a sensor worm
and highlighting the need to come up with efficient
mechanisms to counter such attacks.

1.2. Paper Organization

The remainder of this paper is organized as follows.
First, we discuss related work in Section 2 and state our
assumptions in Section 3. Then, Section 4 overviews
the TI MSP 430 architecture, which is our example
platform, while Sections 5, 6 and 7 provide the details
of the code injection attack. Section 8 describes how to
build a worm so that the malware can be installed in all
nodes of the network. In Section 9, we present detailed
performance measurements and experimental results,
and in Section 10, we discuss possible prevention
measures. Finally, Section 11 concludes the paper.

2. RELATED WORK

Although exploitation of code injection attacks due
to memory faults have been studied thoroughly in
computer systems [?, 16], only recently this has
been applied to sensor networks as well. Goodspeed
first showed how to perform a buffer overflow attack
on the MSP 430 microcontroller in order to execute
instructions within a received packet [12, 13]. The
author noted that packets in TinyOS are always stored
at the same address in the data memory, so overwriting
the program counter (PC) with that address makes
the execution of malicious code possible. Even though

The Computer Journal, Vol. XXX, No. XXX, XXX

Arbitrary Code Injection through Self-propagating Worms 3

TABLE 1. Comparison of code injection attacks.

Property/Code injection Attack [12, 13] [14] [15] This Work

Arbitrary injection code size Partial No Partial Yes
Self-propagation No No Partial Yes
Attack does not rely on pre-existing code Yes No No Yes
Stealthiness of attack (i.e., mote’s execution is not disrupted) N/A N/A No Yes
Efficiency Evaluation (i.e., propagation time, etc.) N/A N/A N/A Yes

it was mentioned that injection of code of arbitrary
length can be done through transmission of a number
of malicious packets, it was not shown how this can be
achieved and more importantly how the injected code
can propagate itself.

When a buffer overflow occurs, the program execution
is disrupted. Hence, in order for the node to be able to
receive further malicious packets, restoration of control
flow needs to take place after each reception. In this
paper we are based on the above technique to launch a
multistage buffer-overflow attack ([17, 18]) in order to
directly inject arbitrary long code inside the mote and
successfully build a worm.

Sensor devices following the Harvard architecture
have also been studied with respect to code injection
attacks. The execution of instructions carried by
malicious packets is not possible in such devices due to
the physical separation of program and data memory
spaces. However, it has been demonstrated how to
invoke functions of already existing application code.
In [14], the authors showed that sensor applications are
susceptible to control-data attacks that alter control
flow to utilize existing routines in order to propagate
the injected packet further to the network. This attack
though does not disrupt the normal operation of the
motes, so the security threat is low.

Recently, Francillon and Castellucia [15] took a step
further and showed how code injection can be achieved
in sensor devices featuring the Harvard architecture.
They demonstrated how an attacker can exploit a
program vulnerability in order to execute an instruction
sequence, called a gadget, that already exists in
program memory. Through the execution of a gadget
chain comprised of Injection and Reprogramming meta-
gadgets, they showed how a fake stack can be
injected byte-to-byte into data memory and used for
reprogramming the sensor with a new program image.

However, only malware of size up to 256 bytes (one
program image) can be injected using this technique.
Larger code needs to be split into program images
which should be injected separately. Thus, since the
injection can only be done byte-to-byte, this requires
an important amount of time that may lead to possible
detection of the attack in progress. In addition,
the described attack is disruptive meaning that each
injection causes the sensor device to reset itself. This
may, again, expose the attack or even lead the mote
to an unstable state where further execution of the

malicious code is prohibited. Furthermore, although
possible convertibility of the injected malware into a
worm is hinted, no definite references of how this can
be achieved are given (i.e code instructions that must
be executed by the worm to replicate and send itself).
In our work, the attack is considered to be stealthy and
not constrained by the assumption of gadgets that must
pre-exist in program’s memory. Instead, the attacker
can inject arbitrarily long malware of her own choice.

Finally, some additional research has been conducted
examining the destructive effects of worms in several
applications in wireless networks. As correct node
operation is an important requirement in sensor
networks, malicious code injection can be used to
disrupt the network operation by deviating from the
prescribed protocol or to launch internal attacks.
Davis [19] discussed how such attacker techniques
severely threaten today’s Smart Meter and Advanced
Metering Infrastructure (AMI) technology that can be
used to measure, collect and analyze energy usage, from
advanced devices such as electricity meters, gas meters,
etc. He was able to identify multiple programming
errors on a series of Smart Meter platforms ranging from
the inappropriate use of banned functions to protocol
implementation issues. Then, he took advantage of
these vulnerabilities and created an in-flash rootkit,
which allowed him to assume full system control of all
exposed Smart Meter capabilities. Also, Goodspeed [20]
talked about stack overflows and how they can be used
to infiltrate security of second generation Zigbee radio
chips. More particularly, he showed how vulnerable
these chips are to key theft due to unprotected
Data memory. These works can be thought as
complementary to our own.

Concluding, a comparison between the most impor-
tant code injection attacks and the one described here is
shown in Table 1, although most of them target sensor
devices featuring the Harvard architecture. A “N/A”
indication shows that a property cannot be directly de-
duced or that is not a part of the proposed attack.
A “Partial” characterization indicates that the corre-
sponding property is not entirely achieved.

3. ASSUMPTIONS

Through out this work we assume a sensor network
that is homogeneous in both hardware and software.
All sensor nodes execute the same program image, as

The Computer Journal, Vol. XXX, No. XXX, XXX

4 T. Giannetsos, T. Dimitriou, I. Krontiris, and N.R. Prasad

it is true for the majority of sensor networks today.
This means that if a vulnerability that the attacker
can exploit for launching a code injection attack is
discovered, all the other nodes will be vulnerable to the
same attack.

We also assume that sensor nodes are loaded with
a simple C-based operating system, like TinyOS [21],
which uses the NesC programming language. This
allows us to look for well known buffer overflow
techniques, since code safety is not considered in such
systems. The use of Java in other paradigms seems
more secure, as it provides built-in protections against
code-based attacks that would exploit array boundaries,
unchecked cast, pointer arithmetics, etc. Also, the
virtual machine examines compliance of incoming code
with the Java standards before execution [22]. Still,
TinyOS is the most widely adopted operating system
in sensor networks, as it is extremely lightweight for
such constrained devices.

4. TI MSP 430 ARCHITECTURE
OVERVIEW

The platform targeted in this attack is the MoteIV
Tmote Sky [7], as it is one of the most widely used
platforms in WSNs. However, any platform following
the Von Neumann architecture falls prey to similar
attacks. The Tmote Sky module uses the ultra low
power TI MSP 430 F1611 microcontroller [23] featuring
10KB of RAM, 48 KB of flash, 128KB of information
storage, and an IEEE 802.15.4 compliant wireless
transceiver [24].

4.1. The TI MSP430 microcontroller

The Texas Instruments (TI) MSP430 family of
processors [9, 25] are low power 16-bit devices. They
incorporate a 16-bit byte-addressed RISC processor,
peripherals and a flexible clock system that interconnect
with each other using a Von Neumann common memory
address bus (MAB) and a memory data bus (MDB) as
shown in Figure 1. In such microcontrollers, program
and data memories share a common address space.
Thus, the CPU can load instructions by addressing
the complete memory address range through MAB and
MDB.

The CPU implements an instruction decoder and a
register file. The instruction decoder is responsible for
translating the numeric op-code program instructions
into processor actions. As core instructions are stored
in words, code is accessed at even addresses. The lower
byte of a word is always at an even address and the high
byte is at the next odd address. The register file consists
of 16 registers of 16 bits, numbered from R0 to R15.
The first 4 of them have a special role, whereas the rest
are for general use, e.g. holding instruction operands or
function arguments.

CPU

Incl. 16 Reg

Program

memory

(Flash)

Data

memory

(RAM)

Timers ADC

MAB

MDB

Compa-

rators

I/O

external

flash

512KB

periph-

erals
802.15.4

radio

MSP430

Tmote Sky Node

FIGURE 1. Tmote Sky memory architecture showing the
common address space used by the CPU.

4.2. Memory Layout

As shown in Figure 1, the MSP 430 Von Neumann
architecture has one address space shared with special
function registers (SFRs), peripherals, RAM and Flash
Code memory. The amount of each type of memory
varies with the type of microcontroller used, but the
overall layout is common and shown in Figure 2.

The total RAM memory consists of two separate
memory modules: lower RAM (0200 - 09FF) and
upper RAM (1100 - 38FF). However, since RAM must
be comprised of consecutive blocks of address space,
the lower RAM module is not actually used by the
microcontroller and its contents are mirrored inside a
specific area of the upper RAM module. Thus, the
actual RAM usable by the CPU really starts at address
1100 and it is contiguous.

The internal extended RAM memory implements two
main data structures: stack and heap. The stack is
responsible for storing data and the return addresses of
subroutine calls and interrupts. It starts at the top
of the memory and grows downwards. The special-
purpose register R1 is the stack pointer, which at any
given time points to the last value placed on the stack.
Values are pushed as 16-bit words and after each push
the stack pointer is decremented by 2. Correspondingly,
as values are pulled from the stack, the stack pointer is
increased by 2.

The heap is the area of memory used for dynamic
allocation and grows upwards from the bottom of
memory. However, since TinyOS does not support

The Computer Journal, Vol. XXX, No. XXX, XXX

Arbitrary Code Injection through Self-propagating Worms 5

Interrupt Vector

Flash Code Memory

Extended RAM (8K)

Mirrored RAM (2K)

Information Memory

Boot Memory

RAM

Peripherals

Heap

Stack

FFFF

FFE0

4000

1900

1100

1000

0C00

0200

256 bytes of Data Flash

1024 bytes of Bootstrup loader
ROM

.

0A00

.

.

FIGURE 2. Memory map of the MSP 430 controller.

dynamic allocation of memory during runtime, the
address region between the heap and the stack will be
empty and unused during program execution.

The main Flash memory is always at the highest
address (FFFF). It can be used for storing both
code and data. It also contains the interrupt vectors
along with the power-up starting address. Each vector
contains the 16-bit address of the appropriate interrupt-
handler instruction sequence. The boot memory is
an unalterable masked ROM containing the serial
bootloader. It is actually a factory set program to erase
and reprogram the on-board flash memory.

5. CHALLENGES OF CODE INJECTION
ATTACKS ON SENSOR DEVICES

Buffer overflows are a leading type of security
vulnerability. They are the result of programming flaws
and are perfect for code injection attacks. They occur
when a malformed input is being used to overflow a
buffer, overwriting the return address that is stored on
the stack. In this way control can be transferred to
code placed either in the buffer, or past the end of the
buffer [26].

Even though it is possible to inject and execute
malicious code to a platform featuring the Von
Neumann architecture, one has to consider several

factors in order to launch the attack successfully. First,
since code injection attacks are based on changing the
flow of control in a program, this may lead the sensor to
restart itself or go into an unstable state, where further
execution of the attack code is canceled.

Furthermore, sensor nodes characteristics and con-
straints limit the capabilities of an attacker, who may
want to send large blocks of code that exceed the al-
lowed packet size. For example, TinyOS sets the de-
fault maximum size of packet payload to be 28 bytes.
Although this can be increased, still the maximum pay-
load size in IEEE 802.15.4 is 102 bytes. Thus, in order
to send a meaningful piece of code, one has to break it
down and send it through multiple packets.

We should also stress that it is best for the
whole attack code to reside in a contiguous memory
region so that it can be executed without any
disruptions. Therefore, the attacker must perform a
“multistage buffer-overflow attack” [17, 18], where she
can manipulate an arbitrary address pointer and modify
the data it points to. Then by sending a number
of packets containing consecutive blocks of code and
copying them into the memory space where this pointer
shows, she can create a contiguous region containing the
attack code.

6. BUFFER OVERFLOW DESCRIPTION

This section describes how a buffer overflow can be
exploited in sensor devices featuring the Von Neumann
architecture. The input data runs over and overflows
the stack, i.e., the section of memory that was set
aside to accept it. Since sensor devices are typically
designed for specific target applications [27, 28], they
are based on a very different memory architecture
than commodity embedded devices [29]. Thus, it is
reasonable to question how such a vulnerability can be
exploited by an attacker in sensor networks.

Two issues need to be addressed in order to
understand how stack-based buffer overflows can be
performed on sensor networks.

• How the attack code is sent and stored on sensor
nodes. As described previously, in the MSP 430
family of processors, both code and data memories
share a common address space. Therefore, a block
of the attack code can be sent as data payload
of a message and stored into memory as a piece
of data. Exploitation of buffer overflow attacks
may then result in alteration of programs execution
control flow since in order for a received packet to
be processed, a memory buffer is needed.

• Where the attack code is stored. Since TinyOS
doesn’t support dynamic memory allocation,
all needed memory for data storage, variables,
functions etc. is allocated automatically during
compilation. Thus, for a specific program image
and hardware platform, memory addresses reserved
for particular operations will be the same. Sending

The Computer Journal, Vol. XXX, No. XXX, XXX

6 T. Giannetsos, T. Dimitriou, I. Krontiris, and N.R. Prasad

ADDRreceive

Stack frame
of strcpy

Stack frame
of receive

...
ReceiveMsg.receive

pRP

received_buff

strcpy

(TOS_MsgPtr msg) {
radio_message_t * =

(radio_message_t *) msg data;

//
uint8_t [BUFFER_LENGTH];
//

(received_buff, pRP data);

return msg;
}

->

->

BUFFER_LENGTH=2 (global var)

copy payload to a buffer (vulnerability)

ADDR

pRP
received_buff[2]

prev

ADDRattack

...

ADDR

pRP
dead

prev

Before overflow After overflow

FIGURE 3. Stack frames before and after buffer overflow.

a piece of malicious code in the payload of a
message will result in being stored as data at the
memory address designated for storing received
packets.

In this paper, we focus on stack-based buffer overflow
attacks that redirect control flow by “smashing” the
stack, which was created when a vulnerable function
was called. If it succeeds, it will cause the return
address of this function to be overwritten and eventually
the instruction pointer will point to the location of
the injected code and start executing it. Hence, the
exploitation technique needs to provide an arbitrary
return address that will replace the already existing
one. In our case, this address is the one reserved by the
compiler for storing the payload of a received packet.
Goodspeed, was the first that observed the effectiveness
of such an exploitation in MSP 430 microcontrollers, by
changing the program counter to point to the address
where received packets are stored [12, 13].

In the remainder of this section, we show how the
stack can be manipulated in order for the attacker to
execute malicious code residing at the memory space of
a received packet. We assume that the sensor node has
a routine for processing received packets and that this
routine has a vulnerability, as shown in Figure 3. Upon
reception, it copies the contents of the packet payload
into the array received buff, using the standard C
strcpy method. If the length of the payload data exceeds
BUFFER LENGTH, a buffer overflow occurs.

Each time a routine method is called, a stack frame
is created for storing temporary data and the return
address ADDRprevious of the caller function, as we
mentioned in Section 4.2. The routine will contain
an instruction sequence that ends with a ret command
for fetching this address from the stack and so control
returns to the caller function. For our reception routine,
a stack frame of 6 bytes will be created, as shown
in Figure 3; two bytes for the message pointer pRP,
two bytes for the array received buff, and two more

bytes for storing the return address. Below this stack
frame resides the stack frame of the strcpy subroutine
call. This contains ADDRreceive, which points to the
next instruction of the receive function that must be
executed after strcpy returns. This is the address that
will be overwritten during the buffer overflow attack.

To start the attack, the attacking node broadcasts
a packet, the data field of which contains the attack
code to be executed and the address ADDRattack of
that code inside the packet. Two extra dummy bytes
in the string (i.e., dead) are needed in order to overflow
the received buff array and overwrite the return address
ADDRreceive. Let us note that, as we mentioned in
Section 4.1, the MSP 430 microcontroller architecture
requires that the attack code must be evenly aligned,
otherwise the sensor resets itself. For the same reason,
address ADDRattack must point exactly to the first
instruction of the attack code, within the stored packet.

The contents of the stack right after the execution of
the strcpy function are illustrated in Figure 3. Thus,
sending a packet with an appropriate string in the
data payload will change the 2-byte return address
of a receiving sensor (ADDRreceive) to the address
ADDRattack. This will lead the instruction pointer to
continue the program execution where the attack code
resides in program memory.

Although this attack can be really dangerous for the
sensors vitality, it limits the attacker with regards to the
length of the attack code that can be executed, as we
said in Section 5. The set of malicious instructions is
limited to the length of the message payload. In the
section below, we will explain how a buffer overflow
can be integrated into a non memory-constrained code
injection attack where the attacker sends malicious code
of arbitrary length.

The Computer Journal, Vol. XXX, No. XXX, XXX

Arbitrary Code Injection through Self-propagating Worms 7

7. EXPLOITING BUFFER OVERFLOW
FOR CODE INJECTION ATTACKS

In order to send arbitrarily long blocks of code, we are
using the “multistage buffer-overflow attack” ([17, 18]).
Multistage buffer-overflow is a type of attack that
requires several steps of buffer overflow. It allows the
attacker to manipulate an arbitrary address pointer and
modify the data it points to. So, by sending a number
of specially crafted packets that result in consecutive
buffer overflows, the attacker has the ability to copy
malicious code from one memory location (payload
of received message) to another (region pointed by
the selected address pointer), and eventually have her
attack code stored in a contiguous memory region,
starting from a memory address of her choice. This
type of attack will bypass the limitations of a single
buffer overflow, in which the length of the attack code
cannot exceed the size of a message payload.

Fundamental to this attack is that we define an
address pointer, namely ADDRcopyTo, which points
to a memory region that is both writable and unused.
Unused means that the address space referring to this
memory region is not used by the program during its
execution and therefore cannot be altered. This is
important since the attack code must remain unaffected
and not get overwritten by any program data. As we
said in Section 4.2, such a memory space can be found
in the MSP 430 microcontroller between the stack and
the heap. This address space is the target region for an
attacker to store the malicious code.

Since this region is unused by the running application,
it is also unaffected by possible reboots of the sensor
node. Thus, once the attacker injects her code into a
sensor node, the code will remain there throughout the
lifetime of the sensor node. For the case of a Tmote Sky
sensor device, we found that a suitable target region
starts at address 2574 and grows upwards.

Let us now overview the steps of a multistage buffer-
overflow attack, before we get into details:

1. The attacker sends a specially-crafted packet to
the target node that, through buffer overflow,
redirects its normal execution to the address of
the payload. This results in copying a block of
malicious code to the region pointed by the target
address ADDRcopyTo. The last instruction within
the packet’s payload restores the normal state and
program flow of the sensor node.

2. Step 1 is repeated n times, where n is the number of
packets needed for injecting the whole attack code
into the sensor. At each repetition, an appropriate
offset is added to the target address ADDRcopyTo,
in order for the code to reside in consecutive
memory addresses.

3. When transmission of the code is finished, the
attacker sends one last specially-crafted packet
that redirects the control flow to the beginning of
the malicious code in the target region, so that it

TABLE 2. MSP 430 assembly code instructions.

Instruction Opcode Description

MOV src, dst 0x40b2 Source operand is moved to
the destination.

BR dst 0x4030 Branch to an address any-
where in the 64K address
space.

can be executed.

Being aware of the steps that an attacker must follow,
two major aspects of a multistage buffer-overflow attack
need to be addressed: how to craft the malicious packets
so that we can restore the program flow and be able
to send more packets, and how to update the target
pointer so that malicious code is copied in consecutive
memory locations. We show how to achieve each of
these steps in separate sections below.

7.1. Composition of Crafted-Packet Payload
and Restoration of Program Flow

As described above, an attacker sends a series of
malicious packets and executes the code in their
payload. The goal of each injected packet is to copy
data (malicious instructions) from one memory location
to another. Hence, a malicious packet must contain a
block of the attack code and all needed instructions for
copying this block to the target region.

When a buffer overflow occurs, it brings the sensor
device to an inconsistent state. However, since the first
step of the multistage buffer-overflow attack must be
repeated n times, it is important to restore the control
flow, as if program instructions were executed normally.
Otherwise, further reception of malicious packets will
not be possible. So, after the successful completion of
a buffer overflow, a malicious packet needs to further
alter the program flow in order to re-establish consistent
state. This means that an intermediate packet must
also contain a specific instruction that will be executed
last and it will restore the program counter.

The MSP 430 assembly language has dedicated
instructions for setting the contents of an address to
a specific value and for manipulating the program
counter. These are the MOV and BR instructions,
respectively, as shown in Table 2. They have unique
2-byte op-codes decoded by the CPU. Since src and dst
operands are defined as data words, they can carry 16-
bit values. This means that each MOV instruction can
copy 2 bytes of the attack code to the target region.

So, the malicious packet will consist of a sequence
of MOV instructions followed by a final BR instruction.
Their purpose is to copy bytes of the attack code
residing in the payload to the target region and restore
control flow of the program. Let’s assume that the
payload of a packet is set to its default maximum

The Computer Journal, Vol. XXX, No. XXX, XXX

8 T. Giannetsos, T. Dimitriou, I. Krontiris, and N.R. Prasad

Payload

Part 1
(6 bytes)

dead

ADDR

0000

attack

4030

2574

4030

2576

4030

2578

f0f2

ffde

0031

4030

ADDRreceive
MOV #f0f2, &2574

MOV #ffde, &2576

MOV #0031, &2578

BR #ADDRreceive

Part 1 Part 2 Part 3

Part 2
(18 bytes)

Part 3
(4 bytes)

FIGURE 4. Malicious packet payload.

size of 28 bytes4. As we described in Section 6, 6
bytes overall (dead, ADDRattack and 0000) are needed
for overflowing the received buff of the reception
routine and overwriting the return address with the
starting address of the malicious code. Data bytes
0000 are used as the terminating character for stopping
the buffer overflow and prevent further damage of the
stack. The remaining 22 bytes are used for carrying
the attack instructions to be executed. Since we also
need a BR instruction that requires 4 bytes, 18 bytes are
actually left for sending the necessary MOV commands.
Therefore, with each malicious packet, a 6-byte block
of the attack code can be copied to the target region.

As illustrated in Figure 4, the payload consists of
three parts. The first part provides the data for buffer
overflow, as well as the attack address ADDRattack, at
which the control flow is directed when the exploited
vulnerable function returns. The second part provides
the necessary MOV instructions for copying the 6 bytes of
the attack code to the target region. Finally, the third
part provides the BR instruction for restoring the control
flow. This is accomplished by setting the program
counter to point to the address where the execution
would normally return to, after the receive function,
i.e., ADDRreceive.

For the example shown in Figure 4, the 6 bytes of
the attack code are designated in bold. These specific
bytes correspond to the first instruction of the code
instance shown below. Its (malicious!) functionality
simply turns on the green LED of a sensor node.

AND.B #ffde,&0031
BIS.B #2, &125e

The target region, where the malcode bytes are
copied, starts at address 2574. Following the same
process, the whole malware can be installed in the
target region. Once this is done, it can be activated

4This is the worst case for an attacker, since as we mentioned
in Section 5, the actual maximum payload size of a message can be
increased up to 102 bytes for radios compliant to IEEE 802.15.4,
as it is the case with our example platform.

by a final buffer overflow exploit. A malicious packet is
sent containing only one BR instruction for redirecting
the program counter to point to the starting address of
the malicious code, 2574.

7.2. Update of the Target Pointer

Fundamental to a multistage buffer-overflow attack
is that the attack code must reside in a contiguous
memory region. Otherwise, activation of this code may
lead the sensor node to an unstable state and cause it
to reboot itself.

This issue is resolved through the use of a target
pointer. Initially, this pointer is set to the beginning of
the unused memory region where the attack code will be
stored. In our case, this address is equal to 2574. Every
time a MOV instruction is executed, a 2-byte block of the
malicious code will be copied to the memory location
pointed by ADDRcopyTo.

When a memory injection packet is received by
a sensor node, a buffer overflow occurs. After
the successful completion of this attack, the MOV
instructions of the packets payload will be executed and
copy k bytes (k is multiple of 2) of code to the target
region. These bytes must be stored in k

2 consecutive
memory addresses, starting where the ADDRcopyTo

points at the time. Thus, after a MOV operation, the
target address must be incremented by 2 in order to
point to the next memory address.

Algorithm 1: Incrementing target address
Data: Part 2 of the malicious packet payload
begin

for each MOV instruction do
MOV src, ADDRcopyTo

ADD #2, ADDRcopyTo

end
end

For example, the malicious packet payload that was
constructed in the example of the previous section

The Computer Journal, Vol. XXX, No. XXX, XXX

Arbitrary Code Injection through Self-propagating Worms 9

contained 3 MOV instructions (see Figure 4). As this was
the first packet to be sent, the ADDRcopyTo pointed to
address 2574. An overview of how the target address
is incremented after each MOV operation is shown in
Algorithm 1.

7.3. Control Flow of the Code Injection Attack

This section summarizes the program’s control flow
during the progress of a multistage buffer-overflow
attack. As described previously, a number of packets
need to be sent for the whole attack code to be copied in
the target region. Thus, each malicious packet needs to
alter control flow several times in order to allow further
reception of packets.

Stack

4000

ADDR startTR

1900

ReceiveMsg.receive()
{

...
strcpy(received_ buff, pRP-> data);
return msg;

}

ADDR receive

ADDR endTR

malcode 3

malcode 2

malcode 1

malcode kTarget Pointer

Received Packet

ADDR attack

Buffer
Overflow

BR ADDR startTR

1

2

3

4

5

6

Buffer
Overflow

MV malcodek BR

...

7

F
L
A

S
H

 C
O

D
E

M
E

M
O

R
Y

E
x
te

n
d

e
d

 R
A

M

T
a
rg

e
t
R

e
g
io

n

M
ir
ro

re
d
 R

A
M

FIGURE 5. Control flow under multistage buffer-overflow
attack.

Figure 5 illustrates the execution flow upon reception
of the k-th malicious packet. It also shows the
specially-crafted packet sent at the end of the attack
for activating the injected malware. Details of the
operations that take place are provided below:

1. Vulnerable function strcpy() is called from the
reception routine.

2. A buffer overflow occurs resulting in the overwrite
of the return address (ADDRreceive), stored
in the stack frame of the strcpy(), with the
starting address ADDRattack of the attack code.

ADDRattack points to the MOV instructions
contained in the packet’s payload.

3. When strcpy() finishes its execution, control flow
is redirected to ADDRattack memory address.

4. MOV instructions are executed for copying malcode
bytes to consecutive memory addresses starting
from where the target pointer (TP) points at the
time.

5. The BR instruction that occupies the last 4 bytes of
the malicious packet payload is executed in order
to restore program’s control flow.

6. Program execution continues normally. This is
accomplished by setting the program counter to
point to ADDRreceive memory address of the
receive function.

7. Once the attack code is stored in the target
region, the last specially-crafted packet is sent for
activating it. Its payload contains a BR instruction
that is executed for setting the instruction pointer
to the starting address of the target region,
ADDRstartTR (2574 in our case).

Once the multistage buffer-overflow attack is com-
plete, the attacker would have succeeded to remotely in-
ject a malware into a sensor node and eventually change
its functionality. The next section shows how this mal-
ware can be converted into a “worm” for propagating
itself and infecting the entire sensor network.

8. DISSEMINATION OF ATTACK CODE -
WORM CONSTRUCTION

Taking code injection attack one step further, this
section describes how the injected malware can self-
propagate, i.e., be converted into a “worm”. Clearly
this is a serious threat [30], if not the most dangerous
one, since the attacker can compromise the entire sensor
network by infecting just a single node.

When a worm is injected to a sensor, it launches
a program for broadcasting itself to other neighboring
nodes, infecting them as well. At no time does the worm
need user assistance in order to spread its “infection”.
All interconnected nodes are at risk of the attack, as the
worm travels over the air and propagates hop by hop.

The main idea is that once the malware is installed, it
launches another multistage buffer overflow attack, this
time targeting the neighboring nodes. For this purpose,
it builds a number of memory injection packets that
contain its own code and broadcasts them using the
host’s radio.

The injected code consists of two parts. The first
part provides the necessary instructions for further
disseminating the whole attack code. The second part
contains the malicious code that was added by the
attacker, in order to take control of the infected sensor
node.

Once activated, the worm will break down the in-
jected code into malicious packets and start broadcast-
ing them. Each time it needs to send a packet, it has

The Computer Journal, Vol. XXX, No. XXX, XXX

10 T. Giannetsos, T. Dimitriou, I. Krontiris, and N.R. Prasad

TABLE 3. Arguments of Transmission Task.

Argument Description Register

addr Destination address R15
length Size of payload R14
*msg Message R13

to use a transmission function in the infected sensor.
One such function that is widely used in sensor appli-
cations is the SendMsg routine of the GenericComm
component:

GenericComm$Send$SendMsg(uint32 t addr, uint8 t
length, message t *msg)

In order to invoke the above transmission func-
tion, the malware needs to provide specific ar-
guments that are passed through general pur-
pose registers. The GenericComm$Send$SendMsg
function actually posts the transmission task
CC 2420RadioM$PacketSent$runTask that also re-
quires 3 arguments. As shown in Table 3, the
arguments are passed via registers R13 to R15.

So, the malware must execute certain instructions for
loading the right arguments to registers R13 to R15,
before calling the transmission function. In particular,
it needs to execute some MOV instructions with the src
operand to be the desired value and the dst operand to
be the register. After this is done, the invocation of the
transmission routine is achieved by simply executing a
CALL #ADDRsend instruction, where ADDRsend is
the memory address of the routine.

When the transmission function is called, it loads
the necessary data arguments from the corresponding
registers and posts a task to the TinyOS scheduler.
This task is actually a deferred procedure call. At
some point later, the scheduler will run this task
through the runTask routine that will invoke the
CC 2420RadioM$PacketSent$runTask event with the
passed parameters. Since the call of the transmission
function is done manually through the attacker’s code,
the malware is also responsible for the invocation of
the runTask routine. In Section 8.2, we will cover the
details of the above described instruction sequence that
is contained in the malware and how it is executed by
the scheduler.

8.1. Aftermath of Worm Propagation

After having propagated itself successfully, the execu-
tion of the attack code proceeds to the second part of
the core sensor worm functionality. This includes code
instructions running for the attacker’s purpose, i.e., tak-
ing over the infected sensor node or stop its execution.
Examples of what an attacker can do are listed below:

1. Bring down the entire network by sending a signal
to the sensor node for stopping its execution. This

TABLE 4. Important Memory Addresses.

Memory Address Description

ADDRstartTR Address containing the first instruc-
tion of the attack code.

ADDRattack Address where the payload of a
received packet is stored.

ADDRpacketSent Address of the malicious packet to
be sent.

ADDRpayloadSent Address of the malicious packet’s
payload.

ADDRreceive Address pointing to the instruction
of the reception routine that must
be executed after the vulnerable
function returns.

ADDRsend Address of the transmission func-
tion.

ADDRtask Address of the runTask routine.
ADDRendTR Address containing the last instruc-

tion of the attack code

is achieved by setting the instruction pointer to the
beginning of a special function, which can be found
in every sensor device loaded with an executable
program image, and call stop program execution.

2. Create a malicious procedure for draining node
battery, or compromising the security level of the
network by conducting erasing actions for memory
and cryptographic keys.

3. Tell the sensor node to report back vital
information, like its neighbor IDs, data structure of
the network messages, or any possible stored values
and keys etc. The exposure of such information
can lead to the total break down of the network’s
operation.

4. Add new functionalities to the already existing
ones. This will allow the sensor node to carry out
the attacker’s tasks without disrupting it’s normal
functionality.

5. Achieve full system control of all exposed
sensor hardware, including remote power on,
power off, usage reporting, and communication
configuration [19, 20].

Note that the above described actions are only a
subset of what an attacker can actually do. Once
the worm has infected the whole sensor network, its
administration passes to the attacker’s hands.

8.2. Implementation Details

In this section, we present the complete code of
the sensor worm that we have implemented. For
demonstrating its feasibility, we load the sensor nodes
with an application that just reports sensor readings
to the base station. The sensor application has a
vulnerable reception routine that copies the packet
payload into a buffer without checking its boundary,
as shown in Section 6.

The Computer Journal, Vol. XXX, No. XXX, XXX

Arbitrary Code Injection through Self-propagating Worms 11

The code needed for self-propagation occupies 166
bytes, whereas the malicious code that is added by
the attacker is of arbitrary length. Thus, at least 28
packets are needed for injecting the attack code into
the unused memory region. Once the code is injected,
it is activated and broadcasts itself by invoking the
transmission function in the infected node.

Algorithm 2: Sensor Worm Assembly Code
Data: Memory addresses of Table 4
begin

MOV #ADDRstartTR, R51

MOV #0, R62

MOV #(ADDRpayloadSent + 6), R73

MOV R5, R84

MOV #dead, &ADDRpayloadSent5

MOV #ADDRattack, &(ADDRpayloadSent + 2)6

MOV #0000, &(ADDRpayloadSent + 4)7

MOV #40b2, 0(R7)8

ADD #2, R79

MOV @R8, 0(R7)10

ADD #2, R711

MOV R8, 0(R7)12

ADD #2, R713

ADD #2, R814

INC.B R615

CMP.B #3, R616

JNC -3017

MOV #4030, 0(R7)18

ADD #2, R719

MOV #ADDRreceive, 0(R7)20

MOV #ADDRpacketSent, R1321

MOV.B #length, R1422

MOV #addr, R1523

CALL #ADDRsend24

MOV #0, R925

MOV.B #1, R1526

CALL #ADDRtask27

INC R928

CMP #4, R929

JNC -1430

ADD #6, R531

CMP #ADDRendTR, R532

JNC -11433

Repeat instructions 5-734

MOV #4030, &(ADDRpayloadSent + 6)35

MOV #ADDRstartTR,36

&(ADDRpayloadSent + 8)
Repeat instructions 25-3037

ARBITRARY MALICIOUS CODE

end

Two functions are involved in the exploitation of the
sensor worm. Function SendMsg is the transmission

TABLE 5. Functionality of Instruction Sets

Instruction Set Description

2-17 Construction of the malicious packet
payload.

18-24 Invocation of the transmission func-
tion.

25-30 Invocation of the runTask routine.
1-33 Repetition of the above instruction

subsets as many times as needed for
dissemination of the whole attack code.

34-37 Construction and transmission of the
specially crafted packet for redirection
of control flow.

routine that is called by the worm, whenever a malicious
packet needs to be sent. Task runTask which is invoked
by the scheduler, once the SendMsg is called.

Table 4 lists some important memory addresses that
are used by the worm. As described in Section 7,
ADDRstartTR is the beginning address of the target
region, where the attack code will be stored and, in the
case of a Tmote Sky sensor device, is equal to 2574.
The values of all other memory addresses depend on
the binary representation of the program image that
is loaded in the sensor node. For the example of our
implemented application, these values were found by
looking into the memory of a sensor using the JTAG
interface provided by the MSP 430 microcontroller.

Algorithm 2 contains the complete code of the sensor
worm. Detailed explanation of the instruction sequence
is provided in Table 5 that shows the block structure of
the code and the functionality of each block.

As we can see, the malware is a chain of instruction
sets (IS) each one of them designated for a specific
operation. Instructions 2-17 constitute an IS for
creating the payload of a malicious packet to be sent,
as described in Section 7.1. This is achieved by setting
appropriate values to the memory addresses pointing to
the payload starting from address ADDRpayloadSent.

Instructions 18-24 are the first part of the IS
responsible for broadcasting a malicious packet. It
calls the transmission function which resides in address
ADDRsend in the program memory. As mentioned
previously, the invocation of such a function requires
the upload of proper arguments through registers R13
to R15. Instructions 21-23 are intended for exactly
this purpose. Continuing to the second part of this
IS, instructions 25-30 call the runTask routine that
invokes the CC 2420RadioM$PacketSent$runTask task
for actually broadcasting a malicious packet. The
above instruction sets are repeated as many times as
needed for the whole malware (stored in address space
bounded from ADDRstartTR to ADDRendTR) to be
disseminated to the node’s neighbors.

Finally, instructions 34-37 construct and send the
specially-crafted packet for redirecting control flow to

The Computer Journal, Vol. XXX, No. XXX, XXX

12 T. Giannetsos, T. Dimitriou, I. Krontiris, and N.R. Prasad

4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

Average Density d

A
v
e
ra

g
e

T
im

e
 E

la
p
s
e
d

 (
s
e

c
)

4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

Average Density d

A
v
e
ra

g
e

T
im

e
 E

la
p
s
e
d

 (
s
e

c
)

4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Average Density d

A
v
e

ra
g
e
 P

a
c
k
e
t

L
o
s
s
 (

%
)

4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

Average Density d

A
v
e

ra
g
e
 P

a
c
k
e
t

L
o
s
s
 (

%
)

Avg Propagation Time

Variance

Avg Propagation Time

Variance

(a) (b)

(c) (d)

Infection Time

Packet Loss

Infection Time

Packet Loss

FIGURE 6. Infection time and Packet loss for different packet rates at the application (Delta) and routing (MultihopLQI)
layer when the malicious code is 28 bytes. (a) Delta(5 sec) - MultihopLQI(5 sec). (b) Delta(5 sec) - MultihopLQI(30 sec).
(c) Packet Loss for case (a). (d) Packet Loss for case (b)

the beginning of the target region.
Note that the above described example intends to

demonstrate the effectiveness of a sensor worm, when a
program vulnerability is present. It does not show how
to find a vulnerability, since this is not the purpose of
this paper.

9. PERFORMANCE EVALUATION

In this section, we present the experimental results
from our implementation of the described sensor worm.
The experiments were deployed both in a simulator
and a real sensor environment. One property was of
special interest, namely Propagation Delay. Since the
worm always reaches 100% of exposed sensor nodes, our
focus is mainly on the time needed to achieve complete
network infection.

9.1. Experiments on real sensor devices

In order to judge the performance of our worm we
first evaluated, on real Tmote Sky sensor devices, the
time needed for the worm to infect all nodes in the
neighborhood of the attacker. The goal is to justify the
practicality of the proposed implementation from a real

deployment point of view. As the worm will propagate
in waves, infecting one neighborhood after the other and
many nodes in parallel, this will give us a better feeling
of what to expect on large scale networks (this will be
examined more thoroughly in Section 9.2).

The experiments were conducted by deploying a
varying number of nodes and averaging the results
over 20 different runs. We designated a node as the
“attack source” who started the infection by injecting
the malware to its neighbors. Network nodes were
running a typical monitoring application (Delta), as
discussed in Section 8.2. We set the size of inserted
malicious code to be 28 bytes. Note that the fixed
length of self-propagation code (166 bytes) is also taken
into consideration in the results.

Since the worm propagates itself through message
transmissions, it is reasonable to mention that its
dissemination depends upon successful broadcasts.
However, this is not guaranteed, as packets may get
lost due to traffic overhead and channel collisions.
That is why we performed the experiments having the
aggregative data rate of packets at the routing and
application layer taken into account. More specifically,
we loaded the Delta application, where the motes can

The Computer Journal, Vol. XXX, No. XXX, XXX

Arbitrary Code Injection through Self-propagating Worms 13

use to report environmental measurements to the base
station in user defined intervals – in our case every
5 seconds. We also deployed the MultihopLQI [31]
protocol at the routing layer which, by default, is tuned
to send control packets and routing information every
30 seconds. Our goal is to demonstrate the propagation
delay of the sensor worm, even under the presence of
heavy traffic on other layers.

Figures 6(a) and (b), respectively, depict the time
needed by the worm to infect all the nodes residing
in the neighborhood of the “attack source” for
increasing data rate of packets and average density
(i.e. neighborhood size) d varying between 4 and 15.
This increase actually corresponds to different packet
rates for Delta and MultihopLQI; for Figure 6(a) they
were both tuned at 1 packet per 5 seconds, whereas for
Figure 6(b) they were tuned at 1 packet per 5 seconds
and 30 seconds, respectively.

What we can infer from these figures is that the
propagation delay is low and depends on the success
or failure of the broadcast transmissions. When
the injected malware is activated, it broadcasts itself
by initiating a transmission sequence of all needed
malicious packets. Note that the radio component of
a neighboring node to be infected may not be ready (or
occupied) at that time and thus some of the malicious
packets may not be received. Furthermore, a radio
transmission may interfere with other signals and fail.
Hence, a node might miss to receive a number of
malicious packets5. This can result in the addition of
an extra delay, since the node will receive the missing
packets from subsequent transmissions of its infected
neighbors.

As more and more packets are sent and received from
a node, an increase to the packet loss is unavoidable.
This can be seen in Figures 6(c) and (d), where the
average packet loss, for the above described scenarios,
is illustrated. When the traffic in a neighborhood is
heavy (i.e. Delta and MultihopLQI transmit packets
every 5 seconds), the number of lost malicious packets
is relatively high. This results in an overall increase of
the infection time since some of the nodes will have to
wait for later transmissions in order to receive all the
worm packets. It also explains the high variance seen
in the propagation delay, as it is proportional to the
number of needed transmission sequences.

We should stress, however, that these figures depict
what happens when we focus at each neighborhood and
“isolate” it from the remaining network, for densities
ranging from 4 nodes (sparse networks) to 15 nodes
(dense networks). The increased time for larger
neighborhood sizes may seem counterintuitive at first
since the attacker node still broadcasts its malicious

5We believe that inserting a more reliable transmission
mechanism will reduce the number of lost malicious packets and
drop the delay further. In future work, we plan to add code
instructions that will enable the worm to re-broadcast missed
packets, if necessary.

payload and one expects more (if not all) nodes to
be infected at once. As, we explained, this is due to
the increased number of collisions and missed packets.
This also means that nodes in a neighborhood will not
be infected in a single round but in more than one,
accounting for the increased infection time. This is
the reason why dense neighborhoods exhibit such a
bad behavior. Does this mean, however, that dense
networks will need more time to be infected? The
answer is no!

As we will demonstrate in the next section, when we
look at what happens in the network level, things will
improve dramatically since spreading of infection will
start as soon as a node gets infected. This is due to the
effect of random worm propagation. This effect allows
parallel transfers of data, thus it is possible for a number
of nodes that reside in different regions of the network
to receive different copies of the worm. Such a case is
exemplified in Figure 7.

Source Attack Distant Node s

A B C D S........
MP 5MP 13

FIGURE 7. Node B needs to wait for later transmission of
node A for malicious packet 13 whereas distant node S has
already started the reception of the malware. This is based
on the existence of a path comprised of already infected
nodes through C.

In this case, node B lost a number of malicious
packets during the first transmission and needs to wait
for later broadcast of node A. However, at the same
time, distant node S starts receiving the malware from
node D resulting in a significantly decrease in the
propagation overhead. This is based on the observation
that since the propagation starts once a node is infected,
it may be the case that some nodes in a path will
actually be infected in a single transmission round and
thus will reach some regions of the network faster than
others.

In the next section, we we will see that the time
needed to infect an entire network really depends on
the number of hops required to reach the most distant
nodes, as this determines the number of intermediate
transmissions. But then, this number is inversely
proportional to the density of the network.

9.2. Simulation Results of Large Scale Net-
works

We used a simulated sensor testbed to measure
the performance of our implemented worm, and to
demonstrate the feasibility of our approach in large
scale networks. Simulation results allowed for further
evaluation of the sensor worm with regard to the
propagation time needed to infect all the sensor nodes,
as the size of the network scales.

The Computer Journal, Vol. XXX, No. XXX, XXX

14 T. Giannetsos, T. Dimitriou, I. Krontiris, and N.R. Prasad

Attack Source

FIGURE 8. Simulated network instance where the worm
propagates in waves, infecting one neighborhood after the
other and many nodes in parallel. The arrows indicate the
direction of these waves.

We generated random network topologies by placing
100, 200, 300, 400 and 500 nodes uniformly at
random in the unit square, and selected an appropriate
transmission range so that the average density d varies
between 4 and 15. Our goal was to check the diffusion
of the worm when different kinds of network multi-
hop trees were constructed. To ensure statistical
validity, we repeated each experiment 1000 times and
averaged the results. We also used additional data to
quantify the packet overhead induced by the routing
and application layer, as described in the previous
section. This configuration takes into account packet
losses and retransmissions and allows us to analyze the
the hop count influence to the overall propagation delay.

In each simulated network instance, we designated a
node as the “attack source” who initiated the infection
by first injecting the malware to its neighbors. The
attacking node was distributed in one of the corners of
the network. This represents the worst-case scenario
for worm propagation since, as we mentioned in the
previous section, the worm’s infection time depends on
the number of required transmissions for reaching all
the sensor nodes. An illustration of such a simulation
instance can be found in Figure 8. Here, the squared
node indicates the “attack source” whereas all the red
triangled nodes have been exposed in terms of worm
infection. As we can see, the worm spreads in waves,
infecting one neighborhood after the other and many

nodes in parallel.
One of the clear observations from the experiments is

that the propagation delay depends on the number of
transmissions needed to reach the most distant nodes.
Since, intermediate transmissions are determined by
the number of hops required to reach the most distant
nodes, we can argue that the overall propagation delay
is proportional to the hop count between the “attack
source” and the most distant sensor node sdist, which
in turn is inversely proportional to neighbor density.
This implies that for higher densities the hop count
between the “attack source” and node sdist is smaller,
and therefore the number of required intermediate
transmissions is less. Figures 9(a), (b), (c), (d) and
(e) depict the time needed by the worm to infect all the
nodes of a network consisting of 100, 200, 300, 400 and
500 nodes respectively.

What we can infer from these figures is that the
overall infection time for low density networks is
relatively high whereas for higher densities it decreases
dramatically. As we explained before, this is based on
the observation that for low densities the number of
hops, and thus the number of required intermediate
transmissions in order to reach the most distant node
sdist, is large. Therefore, counting a small additional
delay due to possible packet loss, this results in a high
overall propagation delay. On the other hand, for high
densities, the number of required hops in order to reach
node sdist is much smaller as the number of 1-hop
neighbors increases. Hence the overall infection time
also decreases as well. In Figure 9(f), we can see the
collection of infection times for all the above described
network scenarios.

In order to verify the relationship between the worm’s
propagation delay and the required number of hops
(i.e., intermediate transmissions), we have included
in Figures 9(a), (b), (c), (d) and (e) an estimate of
the propagation time, denoted as Hops*TransmTime.
This was produced by simply multiplying the mean
hop count (see Figure 10) between the “attack source”
and the farthest node with the mean 1-hop infection
propagation time, without taking into consideration
any delay added by possible packet losses. The 1-
hop propagation time was found to be approximately
15 seconds on the TMote Sky devices and denotes the
time needed for the worm to move from one sensor to
another. This curve (shown in green in Figures 9(a)-
(e)) closely matches the ones found experimentally and
comes to verify our intuition that in large networks
intermediate packet losses and retransmissions have a
very small impact in the overall infection time. What
matters is the number of hops between the attacker and
the most distant node sdist in the network.

In order to calculate the mean hop count between
the attacker and sdist, we conducted simulations and
the results are illustrated in Figure 10. As expected
the hop count is inversely proportional to the neighbor
density. This implies that for sparse networks, the

The Computer Journal, Vol. XXX, No. XXX, XXX

Arbitrary Code Injection through Self-propagating Worms 15

4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400
Number of Nodes 100

Average Density d

A
v
e

ra
g

e
T

im
e

 E
la

p
s
e

d
 (

s
e

c
)

4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400
Number of Nodes 200

Average Density d
A

v
e

ra
g

e
T

im
e

 E
la

p
s
e

d
 (

s
e

c
)

4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400
Number of Nodes 300

Average Density d

A
v
e

ra
g

e
T

im
e

 E
la

p
s
e

d
 (

s
e

c
)

4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400
Number of Nodes 400

Average Density d

A
v
e

ra
g

e
T

im
e

 E
la

p
s
e

d
 (

s
e

c
)

4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400
Number of Nodes 500

Average Density d

A
v
e

ra
g

e
T

im
e

 E
la

p
s
e

d
 (

s
e

c
)

4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400
PD of Large Scale Networks

Average Density d

A
v
e

ra
g

e
T

im
e

 E
la

p
s
e

d
 (

s
e

c
)

Avg Propagation Time

Hops * TransmTime

Variance

Avg Propagation Time

Hops * TransmTime

Variance

Avg Propagation Time

Hops * TransmTime

Variance

Avg Propagation Time

Hops * TransmTime

Variance

Avg Propagation Time

Hops * TransmTime

Variance

(a) (b) (c)

(d) (e) (f)

FIGURE 9. Actual average and estimation of the infection network time for varying densities and networks consisted of (a)
100 nodes (b) 200 nodes (c) 300 nodes (d) 400 nodes (e) 500 nodes. (f) Collection of mean Propagation Delays (PD)

average hop length of the target path between the
“attack source” and the farthest node is relatively
high. Therefore, the number of required intermediate
transmissions is high, resulting in an increment in the
overall worm’s propagation time. On the other hand,
for dense networks, the average hop length is rather low
and thus the overall infection time is decreased.

Overall, the worm’s propagation time is kept low even
for large scale networks consisting of 500 nodes. For
example, if the average density d is 8, the time needed
by the worm to spread to the entire network is under
7 minutes. In any case, the infection time of the worm
is relatively small, making the applicability of detection
mechanisms a rather hard task to achieve.

10. DEFENSE MEASURES

A defensive mechanism against worm attacks can be
the use of a diversified protection scheme, which
diversifies data and code by creating different and
obfuscated data and code segments for each node in
the network [32]. Therefore, the attackers’ effort on
compromising one node cannot reduce their efforts
on compromising another node, as different versions
of the same functionality will not have the same
vulnerability for the attacker to exploit. This approach
is followed by Yang et al. [30], who showed that

by assigning each sensor an appropriate version of
software among a limited number of versions, the
survivability of sensor networks under worm attacks
is significantly increased. However, this method also
restrains significantly the legitimate functionalities of
sensor networks, such as network programmability, that
allows nodes to reprogram themselves with new code
updates disseminated remotely, over the air, to the
entire network.

A different class of defensive measures is to ensure
program safety at run time. For example Safe TinyOS
toolchain [33] inserts checks into application code and
when it detects that safety is about to be violated,
it takes action and keeps errors from cascading into
random consequences. In this way it ensures that array
and pointer errors are caught before they can corrupt
RAM. Another example is Harbor [34], which uses
software-based fault isolation to enforce restrictions on
memory accesses and achieve memory protection. In
particular, it uses an additional safe stack to preserve
the integrity of control flow within and across modules.
Even though the above schemes can protect application
modules from each other or themselves, an attacker
can still look for vulnerabilities into system routines
not included in the modules, in order to evade these
schemes [14].

A reactive measure against worm dissemination can

The Computer Journal, Vol. XXX, No. XXX, XXX

16 T. Giannetsos, T. Dimitriou, I. Krontiris, and N.R. Prasad

4 6 8 10 12 14
0

20

40

60

80
Number of Nodes 100

Average Density d

A
v
g
 N

u
m

b
e
r

o
f
H

o
p
s

4 6 8 10 12 14
0

20

40

60

80
Number of Nodes 200

Average Density d

A
v
g
 N

u
m

b
e
r

o
f
H

o
p
s

4 6 8 10 12 14
0

20

40

60

80
Number of Nodes 300

Average Density d

A
v
g
 N

u
m

b
e
r

o
f
H

o
p
s

4 6 8 10 12 14
0

20

40

60

80
Number of Nodes 400

Average Density d

A
v
g
 N

u
m

b
e
r

o
f
H

o
p
s

4 6 8 10 12 14
0

20

40

60

80
Number of Nodes 500

Average Density d

A
v
g
 N

u
m

b
e
r

o
f
H

o
p
s

4 6 8 10 12 14
0

20

40

60

80

Average Density d

A
v
g
 N

u
m

b
e
r

o
f
H

o
p
s

Avg Hop Count

Variance

Avg Hop Count

Variance

Avg Hop Count

Variance

Avg Hop Count

Variance

Avg Hop Count

Variance

(a) (b) (c)

(d) (e) (f)

HC of Large Scale Networks

FIGURE 10. Average hop count between the “source attack” and the most distant node sdist for varying densities and
networks consisted of (a) 100 nodes (b) 200 nodes (c) 300 nodes (d) 400 nodes (e) 500 nodes. (f) Collection of mean Hop
Counts (HC)

be software-based code attestation. For example,
SWATT [35] enables an external verifier to verify the
code of a running system to detect maliciously inserted
or altered code, without the use of any special hardware.
Yang et al. [36] took this approach one step further
allowing other sensor nodes play the role of the verifier
and alert the rest of the network in case an infected
node is detected. A similar idea focusing on the
concept of cooperative intrusion detection was proposed
in [37, 38], where the nodes collaborate to detect and
isolate an attacking node. To apply such a mechanism
for worm detection, however, one needs to find ways for
legitimate nodes to become suspicious that a worm is
being propagated (and initiate the intrusion detection
process) before they get infected as well.

11. CONCLUSIONS AND FUTURE WORK

We have presented how buffer overflow vulnerabilities
can be exploited in Von Neumann architecture-based
sensor nodes in order to inject arbitrary long code into
the program memory of the mote. The attack can be
used to add new (malicious) functionalities to sensor
nodes (i.e. have the nodes report back vital information)
or simply shut down the entire network.

Our attack breaks the malicious code into multiple
packets and sends them through radio to the sensor
node, where through a multistage buffer overflow it
is permanently stored and executed. We have also
described how the malicious code can be crafted such
that it replicates itself after execution on the mote
and propagates to the rest of the network, making
it the first instance of a self-replicating worm that
can execute arbitrary code as opposed to any previous
work in this area. We have illustrated this attack
by sending different sizes of malicious code on Tmote
Sky sensors and demonstrated the feasibility of taking
over the entire network one node at a time. We have
also presented an evaluation of the worm’s propagation
time in order to show that the infection of large scale
networks takes up only a short amount of time.

As future work, we plan to investigate how worm
propagation is affected by different traffic patterns and
packet drops, in a sense focusing on the reliability
aspects of the dissemination process. We also plan to
identify more vulnerabilities that can be exploited in a
similar manner, as well as build efficient mechanisms to
counter such attacks.

The Computer Journal, Vol. XXX, No. XXX, XXX

Arbitrary Code Injection through Self-propagating Worms 17

REFERENCES

[1] Becher, A., Benenson, Z., and Dornseif, M. (2006)
Tampering with motes: Real-world physical attacks on
wireless sensor networks. SPC ’06: Proceeding of the
3rd International Conference on Security in Pervasive
Computing, Lecture Notes in Computer Science, 3934,
pp. 104–118. Springer.

[2] Hui, J. W. and Culler, D. (2004) The dynamic
behavior of a data dissemination protocol for network
programming at scale. SenSys ’04: Proceedings of the
2nd international conference on Embedded networked
sensor systems, New York, NY, USA, pp. 81–94. ACM.

[3] Liu, A., Oh, Y.-H., and Ning, P. (2008) Secure
and DoS-resistant code dissemination in wireless
sensor networks using Seluge. Proceedings of the
International Conference on Information Processing
in Sensor Networks (IPSN 2008), San Francisco,
California, USA, pp. 561–562.

[4] Lanigan, P. E., Gandhi, R., and Narasimhan, P. (2006)
Sluice: Secure dissemination of code updates in sensor
networks. 53.

[5] Dutta, P., Hui, J., Chu, D., and Culler, D. (2006)
Securing the Deluge network programming system.
Proceeding of the 5th International Conference on
Information Processing in Sensor Networks (IPSN
2006), April, pp. 326–333.

[6] Krontiris, I. and Dimitriou, T. (2006) Authenticated
in-network programming for wireless sensor networks.
ADHOC-NOW, pp. 390–403.

[7] Tmote Sky Quick Start Guide. Technical Report.

[8] Polastre, J., Szewczyk, R., and Culler, D. (2005) Telos:
enabling ultra-low power wireless research. IPSN
’05: Proceedings of the 4th international symposium
on Information processing in sensor networks, Los
Angeles, California 48.

[9] Handziski, V., Polastre, J., Hauer, J.-H., and Sharp,
C. (2004) Flexible hardware abstraction of the TI
MSP430 microcontroller in TinyOS. SenSys ’04:
Proceedings of the 2nd international conference on
Embedded networked sensor systems, Baltimore, MD,
USA, pp. 277–278.

[10] Baar, M., Köppe, E., Liers, A., and Schiller, J. (2007)
The ScatterWeb MSB-430 platform for wireless sensor
networks. Contiki Hands-On Workshop 2007, Kista,
Sweden.

[11] SHIMMER (2008). Sensing health with intelligence,
modularity, mobility, and experimental reusability.
http://docs.tinyos.net/index.php/Intel_SHIMMER.

[12] Goodspeed, T. (2008) Exploiting Wireless Sensor
Networks over 802.15.4. Texas Instruments Developper
Conference.

[13] Goodspeed, T. (San Diego, 2007) Exploiting Wireless
Sensor Networks over 802.15.4. ToorCon 9.

[14] Gu, Q. and Noorani, R. (2008) Towards self-
propagate mal-packets in sensor networks. WiSec ’08:
Proceedings of the first ACM conference on Wireless
network security, Alexandria, VA, USA, pp. 172–182.

[15] Francillon, A. and Castelluccia, C. (2008) Code
injection attacks on harvard-architecture devices. 15th
ACM Conference on Computer and Communications
Security (CCS), Alexandria, VA, USA.

[16] Smirnov and Chiueh, T. (2005) Dira: Automatic
Detection, Identification and Repair of Control-Data
Attacks. Network and Distributed System Security
Symposium.

[17] Piromsopa, K. and Enbody, R. J. (2006) Defeating
Buffer-Overflow Prevention Hardware. 5th Annual
Workshop on Duplicating, Deconstructing, and De-
bunking.

[18] Piromsopa, K. and Enbody, R. (2006) Buffer-Overflow
Protection: The Theory. Proceedings of the 6th
IEEE International Conference on Electro/Information
Technology, East Lansing, Michigan.

[19] Davis, M. (2009) Recoverable Advanced Metering
Infrastructure. Black Hat.

[20] Goodspeed, T. (2009) A 16 bit rootkit and second
generaion zigbee chips. Blakc Hat.

[21] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.,
and Pister, K. (2000) System architecture directions for
networked sensors. ACM SIGPLAN Notices, 35, 93–
104.

[22] Platon, E. and Sei, Y. (2008) Security software
engineering in wireless sensor networks. Progress in
Informatics, 5, 49–64.

[23] Tmote Sky Datasheet. Technical Report.

[24] Kurtis Kredo, I. and Mohapatra, P. (2007) Medium
access control in wireless sensor networks. Computer
Networks, 51, 961–994.

[25] Texas Instruments MSP430x1xx Family User’s Guide.
SLAU049B.

[26] One, A. (1996) Smashing the stack for fun and profit.
Phrack, 7.

[27] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y.,
and Cayirci, E. (2002) A survey on sensor networks.
Communications Magazine, IEEE, 40, 102–114.

[28] Dirk Trossen, e. a. (2007) Sensor networks, wearable
computing, and healthcare applications. IEEE
Pervasive Computing, 6, 58–61.

[29] Ranjan Panda, P. and Dutt, N. (2002) Memory
architectures for embedded systems-on-chip, . pp. 647–
662.

[30] Yang, Y., Zhu, S., and Cao, G. (2008) Improving sensor
network immunity under worm attacks: A software
diversity approach. MobiHoc ’08: Proceedings of the
9th ACM International Symposium on Mobile Ad Hoc
Networking and Computing.

[31] Woo, A., Tong, T., and Culler, D. (2003) Taming the
underlying challenges of reliable multihop routing in
sensor networks. SenSys ’03: Proceedings of the 1st
international conference on Embedded networked sensor
systems, New York, NY, USA, pp. 14–27. ACM.

[32] Alarifi, A. and Du, W. (2006) Diversify sensor nodes
to improve resilience against node compromise. SASN
’06: Proceedings of the fourth ACM workshop on
Security of ad hoc and sensor networks, Alexandria,
Virginia, USA, pp. 101–112.

[33] Cooprider, N., Archer, W., Eide, E., Gay, D., and
Regehr, J. (2007) Efficient memory safety for TinyOS.
SenSys ’07: Proceedings of the 5th international
conference on Embedded networked sensor systems,
Sydney, Australia, pp. 205–218.

[34] Kumar, R., Kohler, E., and Srivastava, M. (2007)
Harbor: software-based memory protection for sensor

The Computer Journal, Vol. XXX, No. XXX, XXX

18 T. Giannetsos, T. Dimitriou, I. Krontiris, and N.R. Prasad

nodes. IPSN ’07: Proceedings of the 6th international
conference on Information processing in sensor net-
works, Cambridge, Massachusetts, USA, pp. 340–349.

[35] Seshadri, A., Perrig, A., van Doorn, L., and Khosla,
P. (2004) SWATT: Software-based attestation for
embedded devices. Symposium on Security and
Privacy, Los Alamitos, CA, USA, pp. 272–282.

[36] Yang, Y., Wang, X., Zhu, S., and Cao, G.
(2007) Distributed software-based attestation for node
compromise detection in sensor networks. SRDS ’07:
Proceedings of the 26th IEEE International Symposium
on Reliable Distributed Systems, Beijing, China, pp.
219–230.

[37] Krontiris, I., Dimitriou, T., and Giannetsos, T. (2008)
LIDeA: A distributed lightweight intrusion detection
architecture for sensor networks. Proceeding of the
4th International Conference on Security and Privacy
for Communication (SECURECOMM ’08), Istanbul,
Turkey, September.

[38] Krontiris, I., Benenson, Z., Giannetsos, T., Freiling,
F. C., and Dimitriou, T. (2009) Cooperative intrusion
detection in wireless sensor networks. EWSN ’09:
Proceedings of the 6th European Conference on Wireless
Sensor Networks, Berlin, Heidelberg, pp. 263–278.
Springer-Verlag.

The Computer Journal, Vol. XXX, No. XXX, XXX

