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Abstract—With the rapidly evolving next-generation systems-
of-systems, we face new security, resilience, and operational as-
surance challenges. In the face of the increasing attack landscape,
it is necessary to cater to efficient mechanisms to verify software
and device integrity to detect run-time modifications. Towards
this direction, remote attestation is a promising defense mecha-
nism that allows a third party, the verifier, to ensure a remote
device’s (the prover’s) integrity. However, many of the existing
families of attestation solutions have strong assumptions on the
verifying entity’s trustworthiness, thus not allowing for privacy-
preserving integrity correctness. Furthermore, they suffer from
scalability and efficiency issues. This paper presents a lightweight
dynamic configuration integrity verification that enables inter
and intra-device attestation without disclosing any configuration
information and can be applied on both resource-constrained
edge devices and cloud services. Our goal is to enhance run-time
software integrity and trustworthiness with a scalable solution
eliminating the need for federated infrastructure trust.

Index Terms—Containerized Microservices, Confidential Con-
figuration Integrity Verification, Oblivious Remote Attestation

I. INTRODUCTION

Recently, academia and industry working groups have made
substantial efforts towards realizing next-generation smart-
connectivity “Systems-of-Systems” (SoS). These systems have
evolved from local, standalone systems into safe and secure
solutions distributed over the continuum from cyber-physical
end devices, to edge servers and cloud facilities. The core pillar
in such ecosystems is the establishment of trust-aware Service
Graph Chains (SGCs) comprising both resource-constrained
devices, running at the edge, but also container-based tech-
nologies (e.g., Docker, LXC, rkt) [1].

The primary existing mechanisms to establish trust is by
leveraging the concept of trusted computing [1]–[4], which
addresses the need for verifiable evidence about a system and
the integrity of its trusted computing base and, to this end,
related specifications provide the foundational concepts such
as measured boot and remote attestation. Within the realms
of malware detection, remote attestation (RA) emerged as a
simple challenge-response protocol to enable a verifier (Vrf) to
ascertain the integrity of a remote platform, the prover (Prv).
A key component in building such trusted computing systems
is a highly secure anchor (either software- or hardware-
based) that serves as a Root-of-Trust (RoT) towards providing
cryptographic functions, measuring and reporting the behavior
of running software, and storing data securely. Prominent

examples include Trusted Execution Environments (e.g., Trust-
Zone) [5] and Trusted Platform Modules (TPMs) [6].

However, none of them is sufficient to deal with the pressing
challenge that container-based virtualization faces concerning
assumptions on the trustworthiness of the Vrf entity: it should
be difficult for any (possibly compromised) Vrf to infer any
meaningful information on the state or configuration of any of
the devices or containers comprising the service graph chain.
In this context, it is essential to ensure not only the security of
the underlying host and other loaded containers but also their
privacy and confidentiality - an attacker should not be able
to infer any information on the configuration of any other
container loaded in the same containerized node or virtual
function.

This dictates for an oblivious theme of building trust for
such SoS where a Prv can attest all of its components
without the need to reveal specific configuration details of its
software stack. For instance, suppose that a Prv runs a Python
interpreter. The Prv may wish not to reveal that it runs version
2.7.13 of the CPython implementation. One option would be
to introduce ambiguity about the software stack components
(e.g., by having the Prv only reveal that it has a CPython
implementation), thus making it harder for a malicious Vrf
to exploit zero-day vulnerabilities in the Prv’s code directly.
However, an even stronger claim is to have the Prv not reveal
anything, which would make it impossible for Vrfs to infer
anything. However, this sets the challenge ahead: How can
a Prv prove its integrity correctness without disclosing any
information about its software stack’s configuration?

One overarching approach, which is the bedrock of the
presented work, is to have a centralized entity (e.g., orches-
trator in charge of deploying and managing the lifecycle of
nodes) who determines what is correct and what is not, and
then have that party setup appropriate cryptographic material
(i.e., restrained attestation keys) on each node in the network
and distribute them to all neighboring nodes. The ability to
then use such restrained keys is physically “locked” from the
node until the node can prove its correctness - supply correct
measurements that will “unlock” its usage. Once released,
the node can use the key to sign nonces supplied from the
surrounding Vrfs, acting as verifiable statements about its state
so that other components can align their actions appropriately
and an overall system state can be accessed and verified.
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Similarly, if Vrfs receive no response or the signature is not
produced using the key initially agreed upon and advertised
by the centralized entity, they can justifiably assume that the
Prv is untrusted. Note that Vrfs need only to know that the
Prv is in an authorized state, not what that state is. However,
one main challenge of such approaches is the strong link
between the restrained cryptographic material and the specific
Configuration Integrity Verification (CIV) policies: Whenever
an updated policy must be enforced, due to a change to the
configuration of the overall system, a new attestation key must
be created [7]. Managing and updating such symmetric secrets
creates an overwhelming key distribution problem.

Contributions: This paper provides a novel CIV protocol
for supporting trust-aware SGCs with verifiable evidence on
the integrity and correctness of deployed devices and virtual
functions. Key features provided that extend the state-of-the-
art include the: (i) possibility to distinguish which container
is compromised, and (ii) the use of trusted computing for
enabling inter- and intra-device attestation without disclos-
ing any configuration information. Our proposed solution is
scalable, (partially) decentralized, and capable of withstanding
even a prolonged siege by a pre-determined attacker as the
system can dynamically adapt to its security and trust state. We
demonstrate our scheme with an implementation leveraging a
Trusted Platform Module (TPM), following the TCG TPM 2.0
specification [6], and benchmark its performance.

II. BACKGROUND AND RELATED WORK

A. Preliminary Definitions

1) Building Chains of Trust with Monotonic Counters: To
enforce secure boot on machine m, we can require that all
components verify their successors by the following recurrence
construct: I0 = true; Ii+1 = Ii ∧ Vi(Li+1), where Ii denotes
the integrity of layer i and Vi is the corresponding verification
function which compares the hash of its successor with a
trusted reference value (TRV). If verification fails at any layer,
the lower layer refuses to pass control and bricks the boot
process. However, to relax the boot process, we can hold
off verification and instead have the components record their
successors’ measurements. To facilitate such recording, each
TPM has several PCRs that can only be modified in two ways:
(i) by resetting the machine on which the TPM resides, and
(ii) through a interface called PCR_Extend, which takes a
value v and a PCR i as arguments and then aggregates v
and the existing PCR value PCRi by computing: PCRi ←
H(PCRi ‖H(v)). The irreversibility property of PCRs makes
it possible to build strong chains of trust. In the context of
measured boot, if all components in the boot sequence: 〈init,
BL(m), OS(m), APP (m)〉 are measured into PCRj , where
init is the initial value that PCRj is reset to and v1, . . . , vn
are the corresponding TRVs of m’s components, then the
PCRj aggregate corresponds to a trusted boot if PCRj =
H(. . . (H(init ‖H(v1)) ‖H(v2)) . . . ‖H(vn)).

2) Remote Attestation: In the context of TPMs, we can
use the Quote interface to get a signed report of select PCR
aggregates. Thus, considering the example of measured boot

in Section II-A1, by presenting a Quote, we can delegate the
verification of a machine’s (Prv) boot process to a remote Vrf.
The two most fundamental ways to run the RA protocol are:

1) Init: Vrf knows TRV = H(. . . (H(init‖H(v1))‖H(v2))
. . . ‖H(vn)).
Step 1: Prv sends PCRj to Vrf.
Step 2: trusted(Prv) ⇐⇒ PCRj = TRV .

2) Init: Vrf knows init, TRV = {v1, . . . , vn}.
Step 1: Prv sends PCRj , L = 〈v′1, . . . , v′n〉 to Vrf.
Step 2: trusted(Prv) ⇐⇒ PCRj = H(. . . (H(init‖H(
L1))‖H(L2)) . . . ‖H(Ln)) ∧ ∀v′ ∈ L : v′ ∈ TRV .

In the first setup, Vrf only knows a TRV of the trusted boot
process. However, if the measurement chain continues beyond
the boot process, or the order in which components are loaded
is non-deterministic, having a single TRV is insufficient. For
non-deterministic temporal orders (e.g., during run-time), it is
preferred to keep a log L to record the measurements’ order.
Thus, in the latter setup, when Vrf, who has a list of TRVs,
wants to determine Prv’s state, Prv sends L and a Quote
over PCRj to Vrf who: (i) validates the association between
PCRj and L by re-creating the aggregate from L’s entries and
comparing it to PCRj , and (ii) compares all of L’s entries to
its TRV list. If everything holds, then Prv is in a trusted state.

B. Toward Confidential Configuration Integrity Verification

IMA [2] is the backbone of several schemes centered in
measuring container integrity [1], [3]. It extends measured
boot into the OS, where, depending on a measurement policy
(MP), files and binaries (objects) are measured and recorded
in a measurement log (ML) and a TPM register. Depending
on MP, IMA proceeds to continuously remeasure objects
as they are accessed or changed during run-time. However,
since IMA assumes the second setup of Section II-A2, RA
is impractical in large networks where all participants must
diligently maintain an excessive list of TRVs. Further, since
the protocol requires that ML and the quoted information be
sent to a Vrf, it exhibits configuration confidentiality issues:
(i) if Prv has sensitive objects, they too must be admitted for
Vrf to determine their correctness; (ii) if Prv records multiple
containers in the same ML and PCR, Vrf learns about each
container; (iii) if Vrf is dishonest, she benefits from ML since
she can identify and spear-phish vulnerable components.

Since IMA’s default ML template contains few associators,
DIVE [1] introduce a dev-id to link entries with containers.
Thus, if Vrf wants to ascertain container c’s correctness, only
c’s ML entries need to be verified against TRVs. However,
since Vrf learns the full ML, excessive configuration exposure
remains an issue. Solving the ML multiplexing issue, security
namespaces [8] enable segregating containers such that con-
tainers have separate MLs and PCRs. However, associating
unique PCRs to containers only works so long as there are
fewer containers than PCRs. Further, although Prv only sends
one container’s ML and PCR aggregate per request, nothing
stops Vrf from querying all containers. To mitigate the issue,
Container-IMA [3] assume a secret between kernel space and
the participant that spawned a container c. When Vrf queries



c, Prv sends c’s measurements obscured under c’s secret, thus
preventing exposure to Vrfs unaware of c’s secret. The main
deficiency, however, is that only c’s parent can verify c.

While there exist other RA variants, e.g., Property-Based
Attestation (PBA) [4], where many measurements are mapped
to one property to prevent Vrf from learning Prv’s exact
configuration, the overhead of requiring that participants agree
on TRVs or what constitutes “property fulfillment” remains
an issue. To mitigate the issue, CloudVaults [7] proposed
a scheme wherein a system orchestrator (Orc), who knows
each participant’s TRVs, securely establishes TRV-constrained
asymmetric attestation key (AK) pairs in each participant’s
TPM, where the secret AK can be used only if a specified PCR
contains the TRV. Thus, Vrfs that know a Prv’s public AK can
send Prv a fresh challenge, and if Prv replies with a signature
over the challenge using its secret AK, then Vrf knows that
Prv is in a correct state. The problem, however, is that new
AKs must be created and shared with all participants whenever
configurations change, causing a key-distribution problem.

III. TOWARD OBLIVIOUS REMOTE ATTESTATION

A. Notation

We consider the following symbols and abbreviations:
VF A virtual function.
T C Trusted Component (e.g., a SW or HW-TPM).

vTPM A virtual (softwarized) Trusted Platform Module.
Orc The orchestrator (trusted authority).

AAgtX Local attestation agent running on VF X .
T rce(r) Retrieve the binary contents of object identified by

r using the secure and immutable tracer T rce.
←,= ← denotes assignment and = denotes comparison.

h Hash digest (0 . . . 0 is used to denote a zero-digest).
H A secure and collision-resistant hash function.

hk(A,B) Symmetric hash key known only by A and B.
HMAC(hk, i) hk-keyed Message Authentication Code over i.
Eval(expr) Evaluation function for arbitrary expressions expr.
Vf(expr) Verification, which interrupts if Eval(expr) = 0.

Sign(m, k) Computes a signature over m using k.
Sigkφ Signature over φ using key k.
H TPM handle, where H ∈ N.

TPL(φ) Template for object φ (including its attributes).
B Boolean variable: B ∈ B = {0, 1} = {false, true}.

name(φ) φ’s name. For keys and NV indices, it is a digest
over the public area, including attributes and policy.

CCcmd cmd’s TPM Command Code.
RC(Eval(cmd)) TPM Response Code after executing cmd.

mPCRVF Set of mock PCR tuples: {〈idx0, h0〉, . . . , 〈idxn,
hn, 〉} associated with VF , where idxi ∈ N0.

mNV PCRVF Set of mock NV PCR tuples: {〈H0, h0, name(H0)
〉, . . . , 〈Hn, hn, name(Hn)〉} associated with VF .

PCRS Set of PCR selectors: {i : i ∈ N0}.
NV PCRS Set of NV PCR selector tuples: {〈H0, h0〉, . . . , 〈

Hn, hn〉}.
PPS A TPM’s secret Platform Primary Seed.

proof(φ) A TPM’s secret value associated φ’s hierarchy.
SK Restricted storage (decryption) key.

EKO
p O’s endorsement (restricted signing) key pair: 〈

EKpk, EKsk〉, where EKsk is encrypted, denoted
sealed(EKsk), while outside the TPM. Optionally,
p is used to refer to a specific part of the EK.

AKO
p O’s attestation (unrestricted signing) key pair:
〈AKpk, AKsk〉, where AKsk is encrypted, denoted

sealed(AKsk), while outside the TPM. Optionally,
p is used to refer to a specific part of the AK.

B. System and Threat Model
1) System Model: The considered system (Fig. 1) is com-

posed of a virtualized network infrastructure where an orches-
trator (Orc) spawns and governs a set of heterogeneous and
cloud-native containerized VF instances as part of dedicated
Service Graph (SG) chains. Each deployed VF is associated
with three T Cs: a vTPM, serving as its trust anchor, an attes-
tation agent (AAgt) to service inquiries, and a secure tracer
(T rce) to measure the current state of a VF’s configuration
(Definition 1), ranging from its base software image, platform-
specific information, and other binaries. Whether the vTPM
is anchored to an HW-TPM [9] to provide enhanced security
guarantees is a design choice and is beyond this paper’s scope.

Fig. 1: Conceptual (initial) system knowledge model.
Definition 1 (Config): A VF’s configuration set represents

all of its uniquely identifiable objects (blobs of binary data).
To proactively secure a VF’s participation in the SG, Orc

intermittently demands a VF to re-measure parts (or all) of
its configuration into its vTPM’s PCRs (either normal or NV-
based) to justify its conformance with the currently compul-
sory policies. To track active PCRs, VFs maintain a separate
list for normal (PCRS) and NV-based PCRs (NVPCRS). Each
VF also begins with three persistent vTPM key handles: (i)
a vTPM storage key (SK) to enable the creation of AKs,
(ii) the VF’s unique EK, which was agreed upon with Orc
during deployment, and (iii) the public part of Orc’s EK to
authenticate Orc. Further, we assume a secret symmetric hash
key (hk) shared between Orc and each AAgt to enable AAgts
to authenticate their involvement in measurements. The hash
key is assumed to reside in secure storage, inaccessible to any
software, except for privileged code of the local AAgt.

On Orc, each VF (besides its identity) is initially repre-
sented by the certified public part of its EK, the hash key
shared with the VF’s AAgt, and two sets of mock PCRs, one
representing the mock (emulated) state the VF’s normal PCRs
(mPCR), and another of the NV-based PCRs (mNVPCR).



2) Adversarial Model: We consider configuration integrity
and therefore do not consider stateless attacks where A per-
forms nefarious tasks without touching any configuration (by
Definition 1). We assume that the underlying system maintains
appropriate file metadata structures for each identifiable object
in a VF’s configuration and cannot be altered by A. Metadata
that relate to the object’s integrity (e.g., its creation and mod-
ification timestamps, or i_generation and i_version
for Linux kernel’s mounted with inode versioning support) are
assumed to be included in an object’s measurements to prevent
A from unnoticeably recording a VF’s configuration, alter it,
and then restore it before the VF is told by Orc to re-measure
its configuration. The untrusted zone, where our protocol is
designed to secure, is depicted in Fig. 1. We let our adversary
(A) roam freely in the untrusted zone (a VF’s userspace) with
unrestricted (create, read, write, and delete) access, including
oracle access to the attached T Cs. For incoming and outgoing
messages, we restrict A to the classical Dolev-Yao model,
where A cannot break cryptographic primitives but is free
to intercept, block, replay, spoof, and inject messages on the
channel from any source. Thus, besides its local knowledge,
unless A learns new cryptographic keys from participating
in the protocol or deriving them as part of other messages,
she cannot compose messages using the secret keys of other
participants. As a final note, we assume that unresponsive VFs
(within reasonable bounds) are untrusted, which, when noticed
by Orc, triggers the revocation of its AK throughout SG.

C. High-Level Security Properties

The objective of our protocol is twofold: (i) to enable Orc to
securely enroll VFs in the SG, and (ii) to enable enrolled VFs
to perform configuration-oblivious inter-VF CIV. Specifically,
our scheme is designed to provide the following properties:

Property 1 (Configuration Correctness): A VF’s load-
time and run-time configurations (by Definition 1) must have
adhered to the latest attestation policy authorized by Orc, in
order to be verified as being correct by any other VFs.

Property 2 (Secure Enrollment): To guard the attestation-
enhanced division of the SG, a VF’s enrollment involves Orc
supervising the VF in creating an acceptable Attestation Key
(AK), which is certified to remain under Orc’s control.

Property 3 (Forward Acceptance): To prevent excessive AK
recreation and redistribution, all AKs are created such that
they can be continuously repurposed (i.e., in which policy they
attest) as determined and authorized by Orc, thus keeping key
distribution at a minimum and circumventing the performance
cost of creating and redistributing multiple AKs for each VF .

Property 4 (Freshness): To ensure non-ambiguous verifica-
tion, a VF can have at most one policy that unlocks its AK.

Property 5 (Zero-Knowledge CIV): To keep configurations
confidential, any VF should only require another VF ′’s AK’s
public part (AKVF

′

pk ) to verify its configuration correctness.
Note that in our considered setup (Section III-B1), Orc is

considered the central entity (i.e., policy creator, authorizer,
and enforcer) who knows the configuration of each VF since it
creates all VFs and manages the whole lifecycle of SG chains.

However, for the protocol to work, Orc is only required to be
online during a VF’s enrollment and when new configurations
need to be deployed. Once enrolled, VFs run the remaining
protocol among themselves in a decentralized manner.

IV. AN ARCHITECTURAL BLUEPRINT

A. High-Level Overview

By conditioning a VF’s ability to attest on whether its
configurations are authorized by Orc, the ORA scheme (see
Fig. 2) enables arbitrary VFs to verify the integrity of other
VFs while remaining oblivious to what constitutes their state.
We preserve privacy as no exchange of platform or state details
is required among VFs. Specifically, contrary to using TPM
Quotes, VFs need no reference values to verify other VFs.

Fig. 2: Holistic work-flow of the ORA protocol.
The scheme’s work-flow (Fig. 2) is as follows. Let SG =
{X : 〈. . .〉, . . .} be the SG maintained by Orc. When a new
VF , say Y , wishes to join, Orc requests it to first create an AK
(Step 1), AKY , using its vTPM, and lock it to a flexible policy
bound to Orc’s EK, ensuring that only Orc can permit AKY ’s
use (Step 2). Once AKY is created, and Orc has verified
that it was done correctly, Orc certifies AKY and advertises
Y’s enrollment to the appropriate SG chain (Steps 3), where
existing VF’s will include Y as an eligible peer (Step 4).
Then, to enable Y to prove its configuration correctness using
its AK, Orc authorizes (signs using EKOrc

sk ) a policy digest E
over Y’s currently acceptable configuration state, and sends it
to Y (Step 5). Given the update request, Y measures its actual
configuration into its vTPM (Step 6). When another VF , X ,
in the same SG chain as Y , wants to determine whether Y is
in a trusted state, it sends a challenge Chal (e.g., a nonce) to
Y (Step 7). If, and only if, Y’s configuration measurements
corresponded to what Orc authorized, access is granted to use
AKY to sign Chal (Step 8). Note that steps 5 and 6 can repeat
any number of times to change Y’s trusted configuration state.

B. Building Blocks

Let us proceed with more details on the separate stages.



1) AK Provisioning: Fig. 3 shows the exchange of mes-
sages between the different actors in the AK-creation protocol,
where Orc is portrayed as an oracle who supplies input to
and verifies output from the VF (X ). The protocol begins
locally on Orc, where a policy digest is computed over the
Command Code (CC) of PolicyAuthorize (specified in
the specification [6]) and the name of Orc’s EK. Note that
such policies are called flexible since any object φ bound
to the policy can only be used in a policy session with
the vTPM after fulfilling some policy (e.g., that the PCRs
are in a particular state) which the policy’s owner (Orc in
our case) has authorized (signed). The policy digest, together
with a template describing the key’s characteristic traits (e.g.,
attributes and type), is then sent to X , who forges the AK
within its vTPM. Besides producing and returning the AK
object, the vTPM also returns a signed ticket over the object
to denote that it was created inside the vTPM. This “creation”
ticket, together with the newly created AK object and X ’s EK,
are then passed to CertifyCreation, where the vTPM
vouches that it was involved in producing AK (if the ticket
holds) by signing (using the supplied EK) the AK object
along with some internal state information. Then, due to AK’s
flexibility, where AK can remain the same throughout X ’s
lifetime, it is stored persistently in vTPM NV memory (using
EvictControl). Finally, X presents the AK and certificate
to Orc, who verifies the certificate’s signature and scrutinizes
its details to ascertain that the AK was created legitimately. If
everything holds, X is permitted to participate in the SG.

2) Remote PCR Administration: Although normal (static)
PCRs cannot be reset during run-time, an NV slot defined
to imitate a PCR can be deleted and recreated depending
on how it is created. We, therefore, require that NV PCRs
be created with a flexible policy, similar to AKs, such that
only upon deletion requests authorized by Orc can the NV
index be undefined. To ensure that only policies specifically
authorized to undefine the NV index can be used, we addi-
tionally include the CC of NV_UndefineSpaceSpecial,
which requires that the Orc-signed policy bears a reference to
NV_UndefineSpaceSpecial. Further, to prevent a VF
from undefining arbitrary NV indices, Orc embeds into the
policy a Command Parameter (CP) digest over the name of
the NV index that should be undefined, which restricts the use
of the policy only to be used on the correct NV index. Note
that for brevity, the protocols to allocate and deallocate PCRs
are given in Fig. 6 and Fig. 7 of Appendix A, respectively,
where we also elaborate more on the details of the processes.
The important thing to note is that when any PCR (regular or
NV) is attached to a VF X , the new PCR index is added to
X ’s local knowledge (its PCRS and NV PCRS structures),
and also to Orc’s mock structures associated with X , i.e.,
mPCRX and mNV PCRX . By synchronizing active PCRs,
a VF keeps an updated list of PCRs to attest. If the list is out
of sync (or altered), attestation using its certified AK is futile.

3) Supervised Updates: To enforce a configuration update,
Orc uses the mock PCRs associated with X to emulate what
the expected (thereby trusted) cascading effect of the update’s

T C : VTPM X : VF
HSK ,HEKX ,HEKOrc

pk

TPL(AK),HSK , hpolTPM2 Create

AK ← object(TPL(AK),HSK , hpol)
hcreation ← H(creation details)

t← HMAC(proof(HSK), (CREATION

‖ name(AK) ‖hcreation))
AK ← 〈AKpk, seal(AKsk,HSK) 〉

hcreation, t, AK

HSK , AKXTPM2 Load

tmp← object(AKX
pk ,

unwrap(sealed(AKX
sk ),HSK))

HAKX ← location(tmp)

HAKX , name(AKX
pk)

HAKX ,HEKX , hcreate, tTPM2 CertifyCreation

t′ ← HMAC(proof(HSK), (CREATION

‖ name(AK) ‖hcreation))
Vf(t′ = t)

certInfo← 〈. . .〉

Sig
EKX

sk

certInfo ← Sign(certInfo,HEKX )

Sig
EKX

sk

certInfo, certInfo

HAKX ,HpersTPM2 EvictControl

Hpers = duplicate(HAKX )

makePersistent(Hpers)
HAKX ← Hpers

1 : hpol ← H(H(0 . . . 0 ‖CCPolicyAuthorize ‖name(EKOrc))) Orc

{TPL(AK), hpol}

2 : Vf(name(AKXpk) = certInfo.objName)

3 : Vf(certInfo.magic = TPM GENERATED ∧ TPL(AK) ∈ AKXpk)

4 : Vf(certInfo.authPol = hpol)

5 : Enc(Sig
EKX

sk

certInfo, EKXpk) = certInfo)

Orc

{
Sig

EKX
sk

certInfo, certInfo, AK
X
pk

}

Fig. 3: AK creation

measurement is and includes the result in a new policy. For
example, let r be a resource on X (also known to Orc) and i
be a PCR attached to X which will house r’s measurement. On
Orc, the current (mock) value of i is assumed to be v. Thus, the
expected value in PCR i after measuring r is H(v ‖H(r)). The
measurement-update protocol is shown in Fig. 4, where, given
a Fully Qualified Path Name (FQPN) of some configuration
on a VF (X ) and a target PCR (idx), Orc locally measures
and authenticates (using the shared secret between Orc and
X ’s AAgt) the configuration measurement and then applies
Algorithm 1 to compose and authorize the expected policy
digest using the mock PCRs associated with X (described
in Section V-A3). The authorized policy and details for X
to perform the measurement locally (i.e., FQPN, PCR type,
and idx) are then sent to X . On X , AAgtX intercepts the
update request, measures FQPN using T rce, and authenticates
the measurement. X then proceeds to use its vTPM to verify
whether the supplied policy digest was signed using Orc’s EK.
If the signature is correct, the vTPM returns a ticket denoting
that the vTPM has verified the policy digest’s correctness.

To prove to Orc that the correct PCR (idx) was extended, X
starts an HMAC session and runs the extend command in audit



mode to have the vTPM internally witness (see Algorithm 2)
the incoming CPs and outgoing Response Parameters (RP) into
the session’s audit digest (cpHash, rpHash, auditDigest are
described in Part 1 of the TPM 2.0 specifications [6]). Once
the command completes, X asks the vTPM to certify the
current session’s audit digest with X ’s EK and sends it to Orc.
To verify the audit digest (Algorithm 3), Orc first computes
the expected audit digest, with the correct arguments and a
successful Response Code (RC). If X ’s audit digest differs
from the expected, or the signature is incorrect, X did poorly.

T C : VTPM X : VF
HEKX ,HEKOrc

pk

H(hpol), Sig
EKOrc

sk

H(hpol)
,HEKOrc

pkTPM2 VerifySignature

Vf(Enc(Sig
EKOrc

sk

H(hpol)
,HEKOrc

pk
) = H(hpol))

t← HMAC(proof(HEKOrc
pk

), (VERIFIED

‖H(hpol) ‖ name(EKOrc
pk )))

t

Session type : HMACTPM2 StartAuthSession

Hhs ← session(HMAC)

session(Hhs).haudit ← 0 . . . 0

Hhs

if BNV = true then
∀〈Hi, hi〉 ∈ NV PCRS :

if Hi = idx then
hi ← H(hi ‖hFQPN )

idx, hFQPN ,Hhs,AUDITTPM2 NV Extend

NVWrite(idx,H(NVRead(idx) ‖hFQPN )

session(Hhs).haudit ← Algorithm 2(
TPM2 NV Extend(idx, hFQPN ,Hhs))

else
idx, hFQPN ,Hhs,AUDITTPM2 PCR Extend

PCRidx ← H(PCRidx ‖hFQPN )

session(Hhs).haudit ← Algorithm 2(
TPM2 PCR Extend(idx, hFQPN ,Hhs))

endif
P ← hpol, T ← t

HEKX ,HhsTPM2 GetSessionAuditDigest

auditInfo← 〈. . . ,
hsession : session(Hhs).haudit〉

Sig
EKX

sk

auditInfo ← Sign(auditInfo,HEKX )

Sig
EKX

sk

auditInfo, auditInfo

1 : hupdate ← HMAC(hk(Orc,AAgtX ),H(T rce(FQPN)))

2 : REQupdate ← Algorithm 1(idx,BNV , hupdate,

mNV PCRX ,mPCRX ,HEKOrc)

Orc

REQupdate ∪ FQPN

FQPN,X ,
idx,BNV

hFQPN ← HMAC(

hk(Orc,AAgtX ),

H(T rce(FQPN)))

AAgtX

3 : X .OK ← Algorithm 3(idx,BNV , hupdate,mNV PCRX ,mPCRX ,

Sig
EKX

sk

auditInfo, auditInfo, EKXpk)

4 : if X .OK = true then
5 : if BNV = true then
6 : ∀〈H, h,name(H)〉 ∈ mNV PCRX : if H = idx then h← H(h ‖hupdate)

7 : else
8 : ∀〈idx′, h〉 ∈ mPCRX : if idx′ = idx then h← H(h ‖hupdate)

Orc

{
Sig

EKX
sk

auditInfo, auditInfo

}

Fig. 4: Measurement update

4) Proof of Conformance: Equipped with an authorized
policy, X can serve attestation requests. When another VF , Y ,
wants to determine whether X is correct, Y sends X a nonce
n. If X responds with a signature over n using its certified AK,

Algorithm 1: Composing AK policy update requests
Input : idx,BNV , hupdate,mNV PCR,mPCR,HEK

Output:
{
hpol,H(hpol),Sig

k
H(hpol)

, idx,BNV

}
1 if BNV = true then
2 ∀〈H, h, name(H)〉 ∈ mNV PCR :
3 if H = idx then h← H(h ‖hupdate)
4 else
5 ∀〈idx′, h〉 ∈ mPCR :
6 if idx′ = idx then h← H(h ‖hupdate)
7 end
8 hpol ← 0 . . . 0
9 ∀〈H, h, name(H)〉 ∈ mNV PCR :

10 args← H(h ‖ 0x0000 ‖ 0x0000)
11 hpol ← H(hpol ‖CCPolicyNV ‖ args ‖ name(H))
12 if mPCR 6= ∅ then
13 hPCR ← ∅, indices← ∅
14 ∀〈idx′, h〉 ∈ mPCR :
15 hPCR ← hPCR ‖h
16 indices← indices ∪ idx′
17 hpol ← H(hpol‖CCPolicyPCR‖indices‖H(hPCR))
18 end
19 Sig

EKsk

H(hpol)
← tpm.Sign(H(hpol),HEK)

20 return hpol,H(hpol),Sig
EKsk

H(hpol)
, idx,BNV

Algorithm 2: Witness
Input : CMD : H0 ×H1 ×H2 × params→

RC × CC × rparams
Output: h′audit - updated audit session digest

1 cpHash← H(CC(CMD) ‖ name(H0) ‖ name(H1)
‖ name(H2) ‖ params)

2 rpHash← H(RC(Eval(CMD)) ‖CCCMD ‖ rparams)
3 h′audit ← H(haudit ‖ cpHash ‖ rpHash)
4 return h′audit

then Y knows that X fulfills Orc’s requirements. The sequence
of steps performed by X are shown in Fig. 5, where X
first executes a series of policy commands (i.e., PolicyPCR
and PolicyNV) to verify and measure the currently active
PCRs (Section IV-B2) in a session’s policy digest. Once all
PCRs have been accounted for, X runs PolicyAuthorize
with the verified ticket (Section IV-B3) and authorized policy
(denoted P). If the session’s policy digest corresponds to the
approved policy, then the vTPM replaces the session’s policy
digest with the name (digest over the public area) of Orc’s
EK, which allows X to wield its AK and sign Y’s challenge.

C. Implementation

We implemented the protocols in C++ and tested them on
two platforms: one with a SW-TPM and another with a HW-
TPM (see Appendix B1). The protocols were benchmarked on
both platforms, and the results are presented in Appendix B2.



Algorithm 3: Verify session audit digest
Input : idx,BNV , hupdate,mNV PCR,mPCR,

Sig
EKsk

auditInfo, auditInfo,EKpk

Output: B
1 if BNV = true then
2 ∀〈H, h, name(H)〉 ∈ mNV PCR :
3 if H = idx then
4 cpHash← H(CCNV Extend ‖ name(H)

‖ name(H) ‖ len(hupdate) ‖hupdate)
5 rpHash← H(success ‖CCNV Extend)
6 else
7 ∀〈idx′, h〉 ∈ mPCR :
8 if idx′ = idx then
9 cpHash← H(CCPCR Extend ‖ idx′ ‖ idx′

‖ authHash ‖hupdate)
10 rpHash← H(success ‖CCPCR Extend)
11 end
12 haudit ← H(0 . . . 0 ‖ cpHash ‖ rpHash)
13 Vf(haudit = auditInfo.hsession)

14 Vf(Enc(Sig
EKsk

auditInfo, EKpk) = auditInfo)

15 return true

T C : VTPM Y : VF (Prv)

NV PCRS, PCRS,

P, T ,HAKY ,HEKOrc
pk

Session type : POLICYTPM2 StartAuthSession

Hps ← session(POLICY)

session(Hps).hpol ← 0 . . . 0

Hps

∀〈Hi, hi〉 ∈ NV PCRS
Hi, hi,HpsTPM2 PolicyNV

Vf(hi = NVRead(Hi))
args← H(hi ‖ 0x0000 ‖ 0x0000
session(Hps).hpol ← H(session(Hps).hpol

‖CCPolicyNV ‖ args ‖ name(Hi))
if PCRS 6= ∅ then

PCRS,HpsTPM2 PolicyPCR

hPCRs ← ∅
∀i ∈ PCRS : hPCRs ← hPCRs ‖PCRi
session(Hps).hpol ← H(session(Hps).hpol

‖CCPolicyPCR ‖PCRS ‖H(hPCRs))

P, T , name(EKOrc
pk ),HpsTPM2 PolicyAuthorize

Vf(session(Hps).hpol = P)
t← HMAC(proof(T ), (VERIFIED
‖H(P) ‖ name(EKOrc

pk )))

Vf(T = t)

session(Hps).hpol ← 0 . . . 0

session(Hps).hpol ← H(session(Hps).hpol

‖CCPolicyAuthorize ‖ name(EKOrc
pk ))

n,HAKY ,HpsTPM2 Sign

Vf(authPol(HAKY ) = session(Hps).hpol)

Sig
AKY

sk
n ← Sign(n,HAKY )

Sig
AKY

sk
n

1 : n←$ {0, 1}t X : VF (Vrf)

n

2 : Vf(Enc(Sig
AKY

sk
n , AKYpk) = n) X : VF (Vrf)

Sig
AKYsk
n

Fig. 5: Oblivious Remote Attestation (ORA)

V. SECURITY ANALYSIS

A. Security Properties

We proceed to evaluate how our scheme upholds the security
properties (Section III-C) under the considered threat model.

1) Property 1: Configuration Correctness: Let A extend
the PCRs (see Fig. 4) with measurements of her choice during
a measurement update, and α be the configuration that Orc
has requested to be measured. If α was altered without first
recording its digest, d ← H(α), A cannot win unless she
picks a random digest d′, where d′ = d. If α is unchanged,
A computes d ← H(α) and supplies d. However, since α is
correct, Property 1 is not violated. Now, assume that A altered
α, but her chosen d′ is correct. Her next challenge is to guess
AAgt’s secret (hk) to solve for HMAC(hk, d′). Unless she
solves this challenge, she cannot extend the correct measure-
ment, and verification of the session’s audit digest will fail on
Orc. Thus, circumventing the measurement process’s integrity
is infeasible, and thus the property holds. Further, since meta-
data is included in measurements (Section III-B2), A cannot
unnoticeably alter and restore configurations between updates.
However, although not covered by the property, alterations
to the configurations currently remain undetected until the
next measurement. We propose two directions to mitigate this
Time-Of-Check to Time-Of-Use (TOCTOU) problem [10].

a) Reactive (lazy) TOCTOU-resistance: The first ap-
proach is to require AAgt to vouch for the configuration’s
correctness at the time of processing the attestation request by
either: (i) comparing the metadata (e.g., the i_generation
and i_version fields), or (ii) re-measuring the configura-
tion. However, for this to be useful, considering that A can
block access to AAgt (Section III-B2), we must extend the
existing attestation policies (Section IV-B3) to require proof
that AAgt handled the attestation. We can achieve this with
PolicyAuthValue and require that hk(Orc,AAgt) be sup-
plied (along with the necessary PolicyNV and PolicyPCR
commands) for PolicyAuthorize to succeed (see Fig. 5).
Note, however, since PolicyAuthValue does not support
limiting when authorization should expire, AAgt must close
the policy session’s handle once it has signed the Vrf’s
challenge. If AAgt had an asymmetric key pair, we could have
instead used PolicySigned, which allows specifying when
authorization to the AK expires, like a “dead man’s switch”.

b) Proactive TOCTOU-resistance: Another approach is
to extendAAgt software to continuously monitor all objects in
FQPN ∈ REQupdate between updates. If the configuration
changes, AAgt effectively neuters the VF’s AK by extend-
ing the active PCRs. However, to achieve this efficiently is
non-trivial. The most notable framework is the conjunction
of IMA (Section II-B) and Extended Verification Module
(EVM), which for the Linux-based kernels, provide fine-
grained mechanisms to measure and detect file alterations.
However, since IMA lacks support to change MP during run-
time, it is unfit in our case. Another increasingly popular
method, also in the context of containerization security [11],
is the use of extended Berkeley Packet Filters (eBPF). With



eBPF, extensions can be applied to the OS kernel during run-
time, enabling (privileged) software to hook and filter system
calls dynamically. Employing the bpftrace [12] tool or BPF
Compiler Collection (BCC) toolkit, we can instrument AAgt
to attach hooks (or probes) on file-related system calls and
match calls targeting the configurations. For example, to detect
writes and deletions we can attach sys_enter_write and
vfs_unlink probes, and to catch calls that open config-
uration files in modes other than read-only, we can leverage
sys_enter_openat. Note, however, that additional probes
are required in practice since files can also be written in other
ways (e.g., using mmap). Nonetheless, utilizing eBPF, we can
effectively and preemptively mitigate the TOCTOU problem.

2) Secure Enrollment (Property 2): To ensure that Orc
controls the use of all AKs, they must be created to only abide
by policies signed by Orc. Since an AK must be certified by
the VF’s EK (using CertifyCreation) to be accepted by
Orc, where EK, for all VFs, is a credentialed non-duplicable
EK (restricted signing key) that can only sign TPM-generated
data, A can neither fool Orc to accept a self-signed creation
certificate nor have the EK sign a A-forged certificate. Also,
if any details in the AK’s certificate (e.g., its attributes, name,
or authorization policy) are incorrect, Orc rejects it. Thus, A
cannot threaten the AK creation process’s integrity. Note that
forward acceptance (Property 3) is ensured during AK creation
by requiring that the authorization policy be a flexible policy
bound to Orc’s public EK. Thus, Property 2 =⇒ Property 3.

3) Freshness (Property 4): Given a configuration update
hupdate for a VF , X , Orc uses Algorithm 1 (Fig. 4) with X ’s
current mock structures, mPCR,mNV PCR, to compose a
policy which accounts for the update. The algorithm performs
the following actions: (i) accumulate hupdate into the appropri-
ate mock PCR (lines 1 to 7); (ii) initialize a policy hpol (line 8);
(iii) extend hpol with a simulation, where, for each mocked NV
PCR i, PolicyNV is executed with i’s current measurement
(lines 8 to 11); (iv) if nonempty, extend hpol with a simulation,
where all PCRs in mPCR are selected and their accumulated
digest is supplied to PolicyPCR (lines 12 to 18); (v) sign
H(hpol). The signature and hpol are then sent to X , where A
also has access to it. Given the authorized hpol, AK is unlocked
using PolicyAuthorize if, after executing the exact same
sequence of commands, the vTPM’s internally accumulated
digest h′pol is equal to the authorized digest: h′pol = hpol.

When, at a later time, X must account for another update,
h′update, its current mock structures mPCR′,mNV PCR′

are again used to authorize a new policy digest h′′pol. How-
ever, if {indicies(mPCR′)∩indicies(mPCR)}∪{indicies(
mNV PCR)′ ∩ indicies(mNV PCR)} = ∅, then hpol and
h′′pol share no elements (PCRs), which means that both policies
can simultaneously unlock X ’s AK. Thus, when another VF ,
Y , wants to verify X ’s correctness, it is undefined which policy
it fulfills. It is therefore necessary that policies are either
(i) created with at least one element in common with the
preceding policy and that this element be extended to neuter
the preceding policy, or (ii) followed by another command
which extends one PCR of the preceding policy.

4) Property 5: Zero-Knowledge CIV: When a VF , X ,
who knows Orc’s identity and public EK, first learns about
another VF , Y , it receives {SigEKOrc

sk

AKY
pk

, AKYpk} from Orc
(Fig. 2). If Property 1 ∧ Property 2 ∧ Property 4 hold, then
Y is correctly associated with AKYpk. Thus, if X chooses a

random number n←$ {0, 1}t and Y presents Sig
AKY

sk
n , where

Enc(Sig
AKY

sk
n , AKYpk) = n, then X knows that Y was able

to use AKYsk and thence fulfills Orc’s requirements. Thus,
Property 1 ∧ Property 2 ∧ Property 4 =⇒ Property 5.

VI. CONCLUSIONS

In this work, we presented an architecture to support confi-
dential CIV using well-known, trusted computing techniques.
With this solution, trust-aware SG chains can be created with
verifiable evidence on the integrity assurance and correctness
of the comprised containers: from the trusted launch (enroll-
ment) and configuration to the run-time attestation of low-
level configuration properties. The proposed scheme consid-
ered state-of-the-art remote attestation variants and addressed
one of the main challenges concerning assumptions on the
Vrf entity’s trustworthiness, thus, enabling privacy-preserving
integrity correctness.
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APPENDIX

A. Protocols for Attaching and Detaching PCRs

Fig. 6 contains the message exchanges to secure the process
of attaching PCRs to a VF (X ). For normal PCRs, X is
informed about which PCR to use (track) and both Orc and X
add to their knowledge, i.e., Orc adds it to mPCRX and X to
PCRS. Otherwise, for NV-based PCRs, Orc sends: (i) a NV
identifier, (ii) a NV template which describes the H algorithm
and attributes of the NV slot, e.g., that modifications must
happen using TPM2_NV_Extend (to imitate a PCR), and that
a policy is required to delete the index, (iii) an authorization
policy which gives Orc the exclusive right to authorize the
deletion of the index (described Section IV-B2), and (iv) an
initial value (IV) to extend. The IV is necessary since newly-
created NV indices cannot be read (or certified) until they have
been written. Thus, to allow X to certify it,Orc sends an initial
(deterministic) IV which X must extend the newly created
NV-based PCR (NVPCR) with. Once the NVPCR is created,
extended, and certified, X sends the certification details to
Orc, who verifies that: (i) the certified information is of a TPM
generated structure, (ii) the NVPCR’s value is H(0 . . . 0 ‖ IV ),
(iii) the NVPCR’s name is as expected (i.e., that it contains the
specified attributes and is bound to the correct authorization
policy), (iv) the certificate is authentic. If everything holds,
then the NVPCR is added to mNV PCRX on Orc.

To detach a normal PCR, Orc simply informs X about
which PCR to remove from its PCRS. For a NVPCR,
however, the process is more tricky. To detach a NVPCR,
Orc requests X to start a fresh policy session and return the
session’s TPM-generated nonce (n). With n and one of X ’s
NVPCRs (idx), Orc runs Algorithm 4, which: (i) authorizes a
policy (hpol) requiring that TPM2_PolicySigned be exe-
cuted with a digest (aHash) signed by Orc (lines 1 and 2), (ii)
signs aHash (as described in Part 2 of the TPM 2.0 specifica-
tions [6]), which is over n, an expiration (set to 0), and a CP di-
gest, hcp (cpHash in Algorithm 2), where hcp restricts the ses-
sion to the undefine command (as required by the NV index’s
authorization policy, see Figure 6) with idx as a parameter
(lines 3 to 8). Thus, to perform the deletion, X : (i) verifies that
hpol was signed byOrc, (ii) executes TPM2_PolicySigned
which: (ii-a) updates the session’s policy digest to indicate
that the command was executed with some digest signed
by Orc, and (ii-b) sets the session’s cpHash to hcp, (iii)
runs TPM2_PolicyAuthorize with hpol, which, if it
matches the session’s policy digest, sets the session’s digest
to state that a policy authorized by Orc was fulfilled, (iv)
runs TPM2_PolicyCommandCode to restrict the session’s
CC, (v) runs TPM2_NV_UndefineSpaceSpecial which
deletes the NV index if everything holds, (vi) removes the NV
index from its local knowledge.

Note that the nonce (n) is just a random and unauthenticated
number, and the authorized policy generated by Orc carries no
information that restricts it to X ’s vTPM. Thus, if two vTPMs
A,B have the same NV index defined (with the same attributes
and bound to the same authorization policy), then the session

could belong to either A or B, and the authorized policy would
succeed. There are two easy solutions to this issue: (i) create
an authentic channel between X and Orc using software, or
(ii) include additional (unique) data when creating a NV index
such that an authorized policy is unique to a specific VF .

T C : VTPM X : VF
PPS HEKX , PCRS,NV PCRS

if BNV = false then
PCRS ← PCRS ∪ idx

else

HPPS , idx,TPL(idx), hpolTPM2 NV DefineSpace

NVCreate(idx,HPPS ,TPL(idx), hpol)
idx, IVTPM2 NV Extend

NVWrite(idx)← H(NVRead(idx) ‖ IV )

HPPS , idx,HEKXTPM2 NV Certify

certInfo← 〈. . .〉

Sig
EKX

sk

certInfo ← Sign(certInfo,HEKX )

Sig
EKX

sk

certInfo, certInfo

NV PCRS ← NV PCRS

∪ 〈idx,H(0 . . . 0 ‖ IV )〉

1 : IV ← 0 . . . 0

2 : if BNV = false then
3 : REQadd ← {BNV , idx}
4 : mPCRX ← mPCRX ∪ 〈idx,H(0 . . . 0 ‖ IV )〉
5 : else
6 : hpol ← H(H(H(0 . . . 0 ‖CCPolicyAuthorize ‖name(EKOrc)))

‖CCPolicyCommandCode ‖CCNV UndefineSpaceSpecial)

7 : REQadd ← {idx,TPL(idx), hpol, IV,BNV }

Orc

REQadd

BNV , idx,X

4 : Vf(certInfo.magic = TPM GENERATED)

5 : Vf(certInfo.nvContents = H(0 . . . 0 ‖ IV ))

6 : Vf(certInfo.objName = name(TPL(idx) ∪ {WRITTEN, idx, hpol})
7 : Enc(Sig

EKX
sk

certInfo, EKXpk) = certInfo)

8 : mNV PCRX ← mNV PCRX ∪ 〈idx,H(0 . . . 0 ‖ IV ), certInfo.objName〉

Orc

{
Sig

EKX
sk

certInfo, certInfo

}

Fig. 6: Attaching a normal or NV-based PCR

Algorithm 4: Authorizing NV index deletion
Input : n, idx,HEK ,mNV PCR

Output:
{
idx, hcp,Sig

EKOrc
sk

aHash, hpol,H(hpol),Sig
EKOrc

sk

H(hpol)

}
1 hpol ← H(H(0 . . . 0 ‖CCPolicySigned ‖name(HEK)))

2 Sig
EKOrc

sk

H(hpol)
← tpm.Sign(H(hpol),HEK))

3 hcp ← ∅
4 ∀〈H, h, name(H)〉 ∈ mNV PCR :
5 if H = idx then
6 hcp ← H(CCNV UndefineSpaceSpecial

‖ name(H) ‖HPPS)
7 aHash← H(n ‖ 0 ‖hcp)
8 Sig

EKOrc
sk

aHash ← tpm.Sign(aHash,HEK)

9 return idx, hcp,Sig
EKOrc

sk

aHash, hpol,H(hpol),Sig
EKOrc

sk

H(hpol)

B. Performance Evaluation

1) Environmental Setup: We implemented our protocols in
C++ with IBM’s TPM Software Stack (TSS) v1.6.0 [13] and



T C : VTPM X : VF
PPS HEKOrc

pk
, PCRS,NV PCRS

if BNV = false then
PCRS ← PCRS \ idx

else
Session type : POLICYTPM2 StartAuthSession

Hps ← session(POLICY)

session(Hps).hpol ← 0 . . . 0

n←$ {0, 1}t

Hps, n

H(hpol), Sig
EKOrc

sk

H(hpol)
,HEKOrc

pk
TPM2 VerifySignature

Vf(Enc(Sig
EKOrc

sk

H(hpol)
,HEKOrc

pk
) = H(hpol))

t← HMAC(proof(HEKOrc
pk

), (VERIFIED

‖H(hpol) ‖ name(EKOrc
pk )))

t

Sig
EKOrc

sk

aHash, hcp, n,HEKOrc
pk
,HpsTPM2 PolicySigned

aHash← H(n ‖ 0 ‖hcp)

Vf(Enc(Sig
EKOrc

sk

aHash,HEKOrc
pk

) = aHash)

session(Hps).hpol ← H(session(Hps).hpol

‖CCPolicySigned
‖ name(EKOrc

pk ))

session(Hps).hpol ← H(session(Hps).hpol)

session(Hps).cpHash← hcp

hpol, t, name(EKOrc
pk ),HpsTPM2 PolicyAuthorize

Vf(session(Hps).hpol = hpol)

t← HMAC(proof(t), (VERIFIED

‖H(hpol) ‖ name(EKOrc
pk )))

Vf(t = t)

session(Hps).hpol ← 0 . . . 0

session(Hps).hpol ← H(session(Hps).hpol

‖CCPolicyAuthorize ‖ name(EKOrc
pk ))

CCNV UndefineSpaceSpecial,HpsTPM2 PolicyCommandCode

session(Hps).CC ←
CCNV UndefineSpaceSpecial

session(Hps).hpol ← H(session(Hps).hpol

‖CCPolicyCommandCode
‖CCNV UndefineSpaceSpecial)

idx,HPPS ,HpsTPM2 NV UndefineSpaceSpecial

Vf(authPol(idx = session(Hps).hpol)

Vf(session(Hps).CC =

CCNV UndefineSpaceSpecial)

Vf(session(Hps).cpHash = H(

CCNV UndefineSpaceSpecial

‖ name(idx) ‖HPPS))
NVDestroy(idx) ∧ Destroy(Hps)

∀〈Hi, hi〉 ∈ NV PCRS :

if Hi = idx then
NV PCRS ←
NV PCRS \ 〈Hi, hi〉

1 : if BNV = false then
2 : REQdelete ← {idx}
3 : ∀〈idx′, h〉 ∈ mPCRX : if idx′ = idx then
4 : mPCRX ← mPCRX \ 〈idx′, h〉
5 : else
6 : REQdelete ← Algorithm 4(n, idx,HEKOrc ,mNV PCRVF)

7 : ∀〈H, h, name(H)〉 ∈ mNV PCRX : if H = idx then
8 : mNV PCRX ← mNV PCRX \ 〈H, h, name(H)〉

Orc

REQdelete ∪ BNVn

BNV , idx,X

Fig. 7: Detatching a normal or NV-based PCR

OpenSSL v1.1.1i, compiled using the GNU GCC compiler. We
considered only elliptic curve (EC) keys and used SHA256
as H. We tested the protocols on two platforms: (P1) a
computer running the Windows 10 OS, equipped with a 3.6
GHz AMD Ryzen 7 3700X CPU, and running IBM’s SW
TPM v1637 [13], and (P2) a Raspberry Pi 4 Model B with an
1.5Ghz ARM Cortex-A72 CPU running the Raspbian (buster)
OS with an TPM 2.0 compliant OPTIGA HW TPM SLB9670.

2) Timing Tests: Table I shows the mean (M) and standard
deviations (SD) after running each protocol 50 times on each

platform (Section B1). For each protocol, we show: (first
row) how long it takes to complete the protocol (i.e., with
preparation) and (next rows) how much time is allocated to
each of the TPM commands. The timings are produced using
C++11’s chrono library’s system clock; each timing statistic
includes time spent on the program code, TSS processing, the
TPM’s internal processing, and any Low Pin Count (LPC) bus
delay (for P2). Note that verification of AK creation, NVPCR
creation, and the signed challenge are omitted since they do
not require interaction with the TPM and take little time, i.e.,
≈ 0.5ms and 2.4ms on average for P1 and P2, respectively.

Although a security-centered HW-TPM is a bottleneck when
it comes to efficiency, it provides security guarantees that a
SW-TPM cannot. Note that the most time-consuming proto-
cols (i.e., AK creation, configuration updates, and NVPCR
deletion) are executed intermittently between Orc and VF ;
thus, they have a negligible impact on the SG. The attestation
(ORA), which VFs run among themselves, takes a VF (with
two active PCRs, one normal and one NV-based), <0.4s to
complete on a HW-TPM and ≈ 10ms with a SW-TPM. Note,
however, that the efficiency of ORA depends on how many
PCRs are attached to the VF .

TABLE I: Timings (in ms) for each platform setup.

Protocol M (P1) ±SD M (P2) ±SD

AK creation (VF) 96.20 1.00 543.23 6.66
TPM2 Create 2.76 0.43 202.97 0.81
TPM2 Load 2.98 0.42 56.61 1.79
TPM2 CertifyCreation 1.12 0.33 146.35 2.29
TPM2 EvictControl 3.18 0.52 97.87 1.77
TPM2 FlushContext 5.44 0.54 37.11 1.52

Measurement update (VF) 9.63 4.55 392.58 3.33
TPM2 VerifySignature 0.93 0.26 116.12 0.71
TPM2 StartAuthSession 1.52 0.52 31.65 0.63
TPM2 NV Extend 4.82 0.65 82.68 1.21
TPM2 PCR Extend 4.84 5.47 79.37 1.13
TPM2 GetSessionAuditDigest 1.14 0.35 128.23 0.85

ORA (Prv) 9.84 8.34 386.68 2.96
TPM2 StartAuthSession 1.52 0.52 31.65 0.63
TPM2 PolicyNV 0.24 0.43 61.96 0.63
TPM2 PolicyPCR 0.18 0.38 59.35 0.51
TPM2 PolicyAuthorize 0.18 0.38 69.13 0.58
TPM2 Sign 5.78 6.77 129.86 1.39

Attaching a NVPCR (VF) 9.14 0.60 113.16 1.60
TPM2 NV DefineSpace 2.52 0.50 26.67 0.81
TPM2 NV Extend 4.82 0.65 82.68 1.21
TPM2 NV Certify 1.20 0.40 75.18 0.61

Detatching a NVPCR (VF) 8.98 0.62 524.93 2.54
TPM2 StartAuthSession 1.52 0.52 31.65 0.63
TPM2 VerifySignature 0.93 0.26 116.12 0.71
TPM2 PolicySigned 0.90 0.30 163.50 0.82
TPM2 PolicyAuthorize 0.18 0.38 69.13 0.58
TPM2 PolicyCommandCode 0.16 0.37 58.40 0.83
TPM2 NV UndefineSpaceSpecial 6.18 0.52 62.60 0.95
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