SECURITY IN SENSOR NETWORKS
Yang Xiao (Eds.) pp. —- —
(©2006 CRC Press

Chapter 12

Secure In-Network Processing in
Sensor Networks

Tassos Dimitriou
Athens Information Technology
19.5 km Markopoulo Ave.
19002 Peania, Athens, Greece
E-mail: tdim@ait.edu.gr

Ioannis Krontiris
Athens Information Technology
19.5 km Markopoulo Ave.
19002 Peania, Athens, Greece

E-mail: ikro@ait.edu.gr

1 Abstract

In-network processing in large-scale sensor networks has been shown to im-
prove scalability, eliminate information redundancy and increase the lifetime
of the network. In this chapter we address the challenge of securing in-
network processing, both for aggregating sensor node’s measurements and
disseminating commands from the aggregators to individual sensor nodes.
We present the key mechanisms for establishing a secure communication
channel between sensor nodes and aggregators and show how scalability
and resiliency against different type of attacks can be achieved. We also
present how requirements such as dynamically adding new nodes in the net-
work and harmonious existence with other security protocols of the network
can be met. Finally we elaborate on resilient aggregation under corrupted
measurements and the proposed solutions.

2 Introduction

Wireless sensor networks are envisioned to consist of hundreds of thousands
of inexpensive nodes, each with some computational and sensing capabilities,
operating in an unattended mode and communicating with each other. The
purpose of deploying a sensor network is to monitor an area of interest with
respect to some physical quantity, e.g. temperature. This information is
gathered by the sensors and reported to a point which we refer to as base
station. This enables a broad range of environmental sensing applications
from vehicle tracking to habitat monitoring [1].

Sensor networks are usually characterized by power, processing and stor-
age limitations. These limitations motivate the design of new network ar-
chitectures and protocols, which, for a given initial battery energy try to
make sure that the network continues to function and provide data updates
for as long as possible. During data gathering, nodes spend a part of their
initial energy on transmitting, receiving and processing packets. It has been
shown [2] that communication takes the largest share, about 70%, of the
total energy consumption of nodes. Therefore, it is desired that new com-
munication protocols minimize any redundant transmissions and reduce the
amount of data relayed in the network, so that the lifetime of sensor nodes
is maximized.

Since sensor nodes have a limited energy which may be exhausted, sen-
sor networks are densely deployed to deal with connectivity and coverage
problems. This causes neighboring nodes to have overlapping sensing re-
gions and generate correlated measurements whenever an event occur in
this overlap. Moreover, sensor nodes are usually deployed randomly, which
reinforces the effect of overlapping regions. Each node observes its sensing
region independent of its neighbors and sends its measurements to the base
station. Therefore, communication overhead can be substantially reduced,
if raw data sent by nodes can be combined to eliminate redundancy and
reduce the number of transmissions.

A technique that has been used to deal with these problems is data aggre-
gation (or data fusion) [3, 4, 5]. The key idea is to combine highly correlated
data coming from different sensors into one packet. This happens at inter-
mediate nodes, called aggregators, which compute an aggregated value of
all the measurements (e.g., an average or maximum temperature), and then
forward only a single packet with the resulted value. The reverse process
is called data dissemination, in which the network hierarchy is used in the
reverse direction in order to disseminate control messages from the base sta-

tion towards the aggregators and eventually towards the sensor nodes. For
example, as shown in Figure 1, in tracking applications the sensor network
may need to be used in both modes: first to aggregate sensed data about
the movement of the tracked object and then to disseminate commands to
nearby sensors to enable further tracking [6].

© Aggregator

® Sensor Node

% Base Station

Figure 1: A tracking application using both (a) aggregation and (b) dissem-
ination.

This and other applications in sensor networks require sensitive infor-
mation to be delivered to the base station and be protected from disclosure
to unauthorized third parties. The broadcast nature of the transmission
medium, however, makes information more vulnerable than in wired com-
munications. Moreover, due to strict resource constraints, existing network
security mechanisms, even those designed for ad-hoc networks, are inade-
quate or not appropriate for this domain, so either they must be adapted or
new ones must be created.

All security protocols in sensor networks should satisfy certain require-
ments in order for sensor nodes to be able to exchange data securely. The
bare minimum consists of providing confidentiality, authentication, integrity
and freshness. However, establishing secure communications between sen-

sor nodes becomes a challenging task, mainly for two reasons: The first is
how to bootstrap secure communications between sensor nodes, i.e. how
to set up secret keys among them. If we know which nodes will be in the
same neighborhood before deployment, keys can be decided a priori. Un-
fortunately, most sensor network deployments are random, therefore such a
priori knowledge does not exist.

The second reason that makes security in sensor networks hard is the lim-
ited processing power, storage, bandwidth and energy resources. Public-key
algorithms, such as RSA are undesirable, as they are computationally ex-
pensive. Instead, symmetric encryption/decryption algorithms and hashing
functions are between two to four orders of magnitude faster [7], and con-
stitute the basic tools for securing sensor networks communication. Since
the resources of a sensor node are very constrained, the key establishment
protocols should be lightweight and minimize communication and energy
consumption.

3 Threat Model

In sensor networks security, an attacker can perform a wide variety of at-
tacks. Not all of them have the same goal or motivations. So, in order to
plan and design better defense systems, we formulate a threat model that
distinguishes between two types of attacks:

3.1 Outsider Attacks

In an outsider attack (intruder node attack), the attacker node is not an
authorized participant of the sensor network. Authentication and encryption
techniques prevent such an attacker to gain any special access to the sensor
network. The intruder node can only be used to launch passive attacks, like
the following:

e Passive eavesdropping: The attacker eavesdrops (listens) and records
(saves) encrypted messages. The messages may then be analyzed in
order to discover secret keys.

e Denial of service attacks: In its simplest form, an adversary attempts
to disrupt the networks operation by broadcasting high-energy sig-
nals. In this way, communication between legitimate nodes could be
jammed, or even worse, nodes can be energy depleted.

o Replay attacks: The attacker captures messages exchanged between
legitimate nodes and replays them in order to change the aggregation
results.

3.2 Insider Attacks

Perhaps more dangerous from a security point of view is an insider attack,
where an adversary by physically capturing a node and reading its memory,
can obtain its key material and forge node messages. Having access to
legitimate keys, the attacker can launch several kinds of attacks without
easily being detected:

e False data injection (stealthy attack): the attacker injects false aggre-
gation results, which are significantly different from the true results
determined by the measured values

o Selective reporting: the attacker stalls the reports of events that do
happen, by dropping legitimate packets that pass through the com-
promised node.

The consequences of these attacks are further magnified in hierarchical
networks, where nodes organize themselves in a tree and nodes aggregate
results coming from the subtree rooted at them. Therefore, the position of
the compromised node may extremely affect the aggregation result. If the
attacker compromises a node higher up the routing tree, she can effectively
misrepresent the readings of a large portion of the sensor network.

Of course, an adversary cannot have unlimited capabilities. There is
some cost associated with capturing, reverse-engineering and controlling a
node. Therefore, we should assume that the adversary can compromise only
a limited number of sensor nodes. This fact affects the design of security
protocols, as it is easier to offer some protection against a few compromised
nodes, but not for the case where a large portion of the network is in control
of the attacker.

4 Secure In-Network Processing

In wireless sensor networks, the first step on providing security for data com-
munication is the establishment of shared keys between pairs of nodes so that
they can encrypt and authenticate data exchanged between them. However,

caution must be taken so that in-network processing is not hindered by the
underlying security protocol. In particular, the following requirements must
be supported by the key management scheme:

1. Data aggregation is possible only if intermediate nodes have access
to encrypted data so that they can extract measurement values and
apply to them aggregation functions. Therefore, nodes that send data
packets towards the base station must encrypt them with keys available
to the aggregator nodes.

2. Data dissemination implies broadcasting of a message from the aggre-
gator to its group members. If an aggregator shares a different key (or
set of keys) with each of the sensor within its group, then it will have
to make multiple transmissions, encrypted each time with a different
key, in order to broadcast a message to all of the nodes. But trans-
missions must be kept as low as possible because of their high energy
consumption rate.

So, the use of pair-wise shared keys between the nodes and the base
station effectively hinders in-network processing. A solution that could sat-
isfy the above requirement could be the use of a key common to all sensor
nodes in the network. However, the problem with this approach is that
if a single node is compromised then the security of the whole network is
disrupted. Furthermore, refreshing the key becomes too expensive due to
communication overhead.

A localized distributed algorithm for key establishment in sensor net-
works that works well with data aggregation is presented in [8]. A scheme is
proposed that utilizes the established keys in order to provide secure com-
munication between a source node and the base station, while intermediate
nodes can access data and perform aggregation. The way this is achieved is
by grouping nodes into clusters, where a common key is shared between the
nodes of the same cluster. Data are encrypted using that key, so aggregation
and dissemination within the cluster is very efficient.

Since information needs to travel between clusters, nodes from different
clusters that are in range of each other must share their keys (cluster keys),
so that they can encrypt and authenticate messages exchanged between
them (see Figure 2). This is like creating bonds between clusters to allow
secure information flowing. It turns out that depending on the network
density, the total number of keys a node needs to store is no more than 5.

Furthermore, disclosure of one node’s keys allows an attacker to disrupt the
communication within this neighborhood, and not in the rest of the network.

Legent

O Node (1 Key)
@ Node (2 Keys)
@ Node (3 Keys)
[0 Cluster Head

Figure 2: An example topology with 3 clusters. Each node stores its own
cluster key as well as the keys of the clusters that are within its communi-
cation range. Communication ranges of nodes 25, 17 and 5 are shown.

This protocol uses clustering only for the key establishment phase. Af-
ter that phase, communication does not use any hierarchial model. In large
sensor networks however, where more than one aggregator exist, there is the
need to use a hierarchical aggregation model, where aggregation nodes form
a tree. As also depicted in Figure 3, the main idea is that each aggregator
collects information for a subset of nodes (group or cluster) and then for-
wards appropriate summaries to other aggregators closer to the base station.
When an end user casts a query to the network, required data are obtained
more efficiently by this method compared with non-hierarchical approaches.
In this case, key establishment must follow a more specific communication
scheme, where aggregators collect information from their cluster members
and disseminate commands to them. Based on this scheme, we present an
efficient mechanism to establish trust between aggregators and sensor nodes

Base
Station

L] \
\
!
* 1
1
1
.l
’
,
®__-
\\
* .\
*
1
. 1

Figure 3: A general hierarchical aggregation scheme. The data of each node
are gathered to the aggregator that is the representative node in each cluster.
The information from the aggregators is further aggregated to compute the
final result.

that allows secure in-network processing [9]. Other protocols that focus
on securing in-network processing based on different hierarchical organiza-
tions and more stronger assumptions on the capabilities of sensor nodes are
described in [10] and [11].

Throughout the rest of the chapter we use the following notation:

Notation Meaning

S; Identifier of sensor node 3.

A; Identifier of aggregator i.

My, Mo Concatenation of messages M7 and Ms.

Ex(M) Encryption of M using key K

MACK(M) | Message Authentication Code (MAC) of M using key K.

Initially each sensor node is loaded with two keys: A master key K,,,
shared among all nodes, and a unique key, denoted Kg, for nodes and K 4, for
aggregators’. The master key as well as the keys of each sensor/aggregator

We don’t imply by this that the aggregators are known in advance. Once nodes
determine their roles through the use of some clustering protocol, then we can talk about

are known to the base station. For each sensor node, S5;, the unique key is
computed before deployment as follows:

KSi = F(Kmvsl)a

where F() is a secure pseudo-random function. Notice that an adversary
upon compromising node S; cannot recover the master key K,, from the
key Kg, because of the one-wayness of F'(). Hence the rest of the network
remains secured.

Correspondingly, for each aggregator, Aj;, the unique key K4, is derived
from

KA, = F(Knm, Aj).

We will see in Section 4.1 that K, is kept by A; for as long it is necessary
to establish secret keys with the nodes belonging in the A;’s group. Then it
is deleted from the memory of the aggregator as well as the rest of the nodes
in order to eliminate the possibility of being retrieved by an adversary who
has physically captured a node.

In what follows, although not shown, we assume the use of different
keys for different cryptographic operations; this prevents potential interac-
tions between the operations that might introduce weaknesses in a security
protocol. Therefore, we use independent keys for the encryption and authen-
tication operations, K, and Kjsac respectively, which are derived from
each unique key Kg, through another application of the pseudo-random
function F, i.e. Keper = F(Kg,,0) and Kpac = F(Kg,, 1).

4.1 Key Establishment for Secure Aggregation

As we said in the previous section, each sensor node is preloaded with the
key Kg, which is the result of the application of a secure pseudo-random
function on the master key K,,. In order for a node to communicate with
its aggregator, this key must be available in both sides. So, the node must
first inform the aggregator about its key in a secure way. This can happen
by sending an appropriate “hello” message Mpgeio:

Si = Aj : Mueiio, MACkg, (Mpeio)

where the My, consists of the sensor’s id S; and a nonce Ng, computed
by the sensor.

the keys K, and K A

Having received this message, the aggregator A; is now able to compute
K, using the master key K,, and authenticate it by checking the MAC. If
the MAC verifies, the sensor node is included in the cluster and the aggre-
gator sensor stores all relevant information (such as Kg,, nonce identifier -
to avoid replay attacks, etc.). Additionally the aggregator may send back a
reply to acknowledge the inclusion in the cluster (also MACed with Kg,).

The same procedure is repeated for every node with its aggregator, in
an initial phase after the deployment of the network. This phase is secure
as long as the adversary does not know the master key. Therefore, we must
assume that the phase is too sort in time for an adversary to capture a node
and retrieve the master key K,, (see also [8, 12] for a similar assumption).

The memory requirements of this phase are determined by the number of
keys each aggregator have to store, i.e. the number of nodes in each cluster.
Figure 4 shows the average number of keys each aggregator has to store
as a function of the number of aggregators in the network. As expected,
the more the aggregators in the network, the more the clusters that will be
formed and therefore, the less the average number of sensor nodes in each
cluster.

125

-

(o)) ~ o

o [$)] o
L L

Average number of keys

N
[$)]
L

1 2 3 4 5 6 7 8 9 10
Number of aggregators

Figure 4: Average number of keys an aggregator has to store in a random
network of 1000 nodes.

However, since we consider random topologies, it may be the case that a

10

cluster have more members than the others. Figure 5 shows the maximum
number of keys found in aggregators after 1000 experiments in random net-
works of 1000 sensor nodes. In all the experiments 50 aggregators were
randomly selected and each sensor node joined the cluster of the closest ag-
gregator. The figure shows the distribution of the maximum number of keys
found in any aggregator, which is within reach of current sensor nodes.

500 -
450 - 432

400 -

300
250 - 235

209
200

150 -

Number of simulations

6 7 2 2 1

30-39 40-49 50-59 60-69 7079 80-89 90-99 100-109 110-119 120-129
Maximum number of keys

Figure 5: Maximum number of keys an aggregator has to store in a random
network of 1000 nodes. The figure shows that in most cases (432 experiments
out of 1000) the maximum number of keys found in any aggregator was
between 50-59.

After the completion of the phase, the master key is deleted by the
memory of every node. Since the security of our protocol depends on the
deletion of the master from the memory of the sensor nodes, we should
take care that the deletion is unrecoverable, for example by overwriting the
master key (in practice several times). We have now established a secure
channel between the aggregators and the sensor nodes.

11

4.2 Key Establishment for Secure Dissemination

Having secured the communication of sensor nodes towards their aggrega-
tors, we now need to secure the reverse procedure: the dissemination of
messages/commands from the aggregators to the sensor nodes. One simple
but inefficient solution would be to send a separate unicast message to each
member of the group encrypted and authenticated using the key shared be-
tween the aggregator and the specific node. This would result in several
transmissions of the same message, wasting energy resources.

The solution to this problem is for the aggregators to construct and prop-
agate a group key to its members during the initial phase after deployment.
In this way, dissemination can take place later by a single broadcast of the
message encrypted by that key. Each aggregator A; constructs and sends a
group key G, to each sensor S; that belongs to its group:

A;: c=FEkg,,. (“Group key”, A;,Gk,),
0= MACKI\JO,C (C)
Ai i Sj : Ai, C, 0

The group key is encrypted and authenticated each time using the sen-
sor’s private key Kg,, which is available to the aggregator as described in
the previous section. First the aggregator encrypts the group key using the
key Keper derived from Kg, and then creates a MAC o of the resulting
ciphertext c.

Once the aggregators settle a group key G, with their group members,
they can broadcast commands encrypted and authenticated using Gg,. This
is sufficient to secure communication from an outsider who does not hold
the group key. However, an insider adversary, who has captured a group
node and retrieved Gg,, can impersonate the aggregator and send forged
messages to nodes in the same group. Therefore we need to secure further
the dissemination process.

4.2.1 Defending against impersonation attacks

We enhance the security protocol described above, in order to ward off
insider attacks that impersonate the aggregator and try to disseminate mes-
sages to the group. The solution is that whenever an aggregator A; has a
new command to disseminate to the nodes, it attaches to it the next key,
K, from an one-way key chain, as follows:

12

A;: c= EGKi (“Command”, 4;, K;),
o =MACg,, (c)
A; — Group: A, c,o

So, the [-th command sent by the aggregator to the group nodes contains
the [-th commitment of the hash chain and is encrypted and authenticated
using keys derived from GF;.

One-way key chains are a widely-used cryptographic primitive. To gen-
erate a chain of length n we randomly pick the last element of the chain
K. Then, each element of the chain is generated by repeatedly applying
an one-way function F, until the Ky element, which is the commitment to
the whole chain. We then reveal the elements of the chain in reverse order,

Ko, Ky, Ky K1, K,

If we know that K;_; is part of the chain, we can verify that K; is also
part of the chain by checking that K;_; = F(K;). Therefore, a node re-
ceiving a command encrypted with the group key can verify its authenticity
by checking whether the new commitment K; generates the previous one
through the application of F'. When this is the case, it replaces the old com-
mitment K; 1 with the new one in its memory and accepts the command
as authentic. Otherwise it rejects it.

One issue with the one-way key chain is that it limits the length of the
trust delegated to an aggregator. This is because the length of the chain
determines the number of packets that the aggregator can send to its sensor
group members. That is, for a chain of length n the aggregator can send at
most n—1 separate commands at the nodes. An aggregator can renew its key
chain as follows: before the aggregator uses the last commitment, it creates
a new hash chain K{, K1,...,K],_;, K/ and broadcast a “renew hash chain”
command which contains the new commitment K authenticated with the
last unused key of the old chain. This essentially provides the connection
between the two chains and the group nodes will be able to authenticate
commands as before.

So far we have limited the possibility of an impersonation attack, but
we have not eliminated it. There is still a scenario were an adversary can
jam communications to a sensor S; so that it misses the last & commands
and hence commitments. Then it introduces new commands by “recycling”

13

the unused commitments. It will be impossible for sensor S; to notice the
faked commands as the ordering of commitments is followed.

In order to defend against an attack like this we may assume that sensors
are loosely time synchronized and commands are issued only at regular time
intervals. That means a packet broadcast from the aggregator at time slot ¢
contains commitment K;. If a sensor node does not receive anything within
the next d slots and the last commitment was K;, it will expect to see the
commitment K; 4 that accounts for d missing commands. In this way it
cannot be misled and authenticate unused commitments.

Finally, we must note that an implicit defense against impersonation
attacks that not only eliminates but also helps detect these types of attacks
is to have the sensor nodes respond to the aggregator using the shared key
Kg,. In this manner, even if an attacker has issued false commands, it will
not be able to use the information sent by the sensor nodes. Additionally, if
the aggregator receives responses to commands that it has not issued, it will
become aware that an attacker has compromised some nodes in the cluster
and eventually take corrective actions.

4.3 Adding new nodes in the network

This section address the problem of refreshing the network as sensors usually
have limited lifetime and usually die of energy depletion. Each new node
S! comes equipped with a unique key, Kg/, which is derived from a new
master key K/ , in the way we have alreadyldescribed. The new master key
is also forwarded to all the aggregator nodes from the base station, using the
key shared between the base station and the aggregator in order to create a
secure channel.

Every new node transmits a hello message to its neighbors indicating its
will to become a member of an existing group. The message contains its
identifier and a nonce:

Si — Aj : Mpyeio, MACr, (Mpenno)

In the same manner as described in Section 4.1, the aggregator computes
Kg and authenticates the hello message. If all checks out, the new node
is added to the cluster and the aggregator creates a new group key which
broadcasts to the group.

14

5 Resilient aggregation

So far we have described a key management scheme that allows aggregators
to authenticate sensor nodes and vise versa. As a result, a malicious node
injected in the network cannot authenticate itself and disrupt in-network
processing. If, on the other hand an adversary physically captures an exist-
ing node and retrieves its key material, it will also be hard for her to imper-
sonate an aggregator and disseminate messages. However, a compromised
node can authenticate itself to the aggregator and start sending false read-
ings, in order to affect the aggregation result. It is difficult to detect such an
attack since that would require application (semantics) specific knowledge.

What can be done in this case is to make aggregation functions more
resilient to some corrupted measurements. That means a few corrupted mea-
surements should not cause large errors in the computed aggregate, under
the assumption that only a very small fraction of nodes can be compromised.

In research work done on this direction [13] it is proposed that instead
of aggregating measurements by computing the sum or the average, more
resilient functions can be used. For example the median or the 5%-trimmed
mean, where the highest and lowest 5% of the sensor readings are ignored,
can be fairly robust for large network sizes and high node densities (redun-
dancy).

Another approach is described in [14] that is termed the aggregate-
commit-prove technique and used to authenticate the results sent by ag-
gregators in the base station. That is, even if an attacker captures the
aggregator and forces it to produce false results (within a bound), we can
detect this attack with high probability. First the aggregator computes the
aggregation result of data collected by sensor nodes. In the commit phase,
the aggregator commits to the collected data, which ensures that the data
collected were actually used. For the commitment, a Merkle hash-tree is
used [15]. In this construction, the leaves hold the collected data and each
internal node computes the hash value of the concatenation of the two child
nodes. The root (aggregator) computes the final hash value which is the
commitment. In the final phase, the aggregator sends the aggregated data
and the commitment to the base station. The aggregator then proves to the
base station that the data is correct using an interactive proof. To do that,
the base station does the aggregation on some randomly chosen samples to
check if aggregated result sent by the aggregator is good.

The proposals that we presented in this section are some first steps to-
wards a general need to fortify sensor network security mechanisms with

15

self-awareness and self-healing so that they can autonomously recognize and
respond to a security threat. This requires nodes to have knowledge about
the network’s state (or more realistically, the state of neighboring nodes) and
monitor the network for abnormal behaviors of sensor nodes or data traffic.
To characterize normal and malicious behavior, appropriate rules must be
generated, based on statistics, induction and deduction. Once the network
is aware that an intrusion has taken place and have detected the compro-
mised area, appropriate actions must be taken. The first one is to cut off
the intruder as much as possible and isolate the compromised nodes. After
that, proper operation of the network must be restored. The challenge here
is that all these steps must be taken autonomously, that is without human
intervention.

6 Conclusions

In this chapter we have presented how a sensor network can secure its in-
network processing against insider and outsider attacks. We elaborated on
the general requirements that such a security protocol must satisfy and then
described an efficient security mechanism on a general hierarchical aggrega-
tion/dissemination scheme. This mechanism provides a key management
scheme for the establishment of secure channels between nodes and aggre-
gators as well as support for addition of new nodes to the network, a critical
requirement in sensor networks, as sensors have limited energy and thus
limited life expectancy.

Performance evaluation shows that secure in-network processing can be
achieved with very realistic memory and processing requirements. It does
not depend on the existence of location information or on the underlying
routing protocol. There is also no need to burden the base station with any
additional computation load. Secure in-network processing can be realized
as a distributed service that is scalable and adaptable.

The mechanisms presented here can be incorporated in a general, holistic
approach that encompasses responses over a broad range of attacks. This
is a research challenge that remains, where sensor networks are reinforced
with an adaptive security architecture that can monitor the network, recog-
nize a security threat and respond either by preventing the intruder or by
isolating the damage and restoring the network’s normal operation. In a dy-
namic communication environment of thousand of nodes, such a mechanism
must not hinder other network processes but rather co-exists with them and

16

defend them.

References

1]

[6]

C.-Y. Chong, and S.P. Kumar, Sensor Networks: Evolution, Opportu-
nities, and Challenges, in Proceedings of IEEE Vol.91 No.8 (2003) pp.
1247-1256.

A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D. Tygar, SPINS:
Security Protocols for Sensor Networks, in Proceedings of 7th ACM
Mobile Computing and Networks (2001) pp. 189-199.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a
Scalable and Robust Communication Paradigm for Sensor Networks, in
Proceedings of 6th ACM/IEEE Mobicom Conference (2000).

B. Krishnamachari, D. Estrin, and S. Wicker, The Impact of Data
Aggregation in Wireless Sensor Networks, in Proceeding of International
Workshop on Distributed Event-Based Systems (2002).

S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, Supporting
Aggregate Queries Over Ad-Hoc Wireless Sensor Networks, in Pro-

ceedings of Workshop on Mobile Computing Systems and Applications
(2002).

Y. Xu, Energy-aware Object Tracking Sensor Networks, in Proceedings
of International Conference on Distributed Computing System 2003
Doctoral Symposium (2003).

D. Carman, P. Kruus, and B.J.Matt, Constraints and Approaches for
Distributed Sensor Network Security, Tech. Rep. 00-010, NAI Labs,
2000.

T. Dimitriou, and I. Krontiris, A Localized, Distributed Protocol for
Secure Information Exchange in Sensor Networks, in Proceedings of the
5th IEEE International Workshop on Algorithms for Wireless, Mobile,
Ad Hoc and Sensor Networks (2005).

T. Dimitriou, and D. Foteinakis, Secure In-Network Processing in Sen-
sor Networks, in Proceedings of First Workshop on Broadband Advanced
Sensor Networks (IEEE BASENETS) (2004).

17

[10]

[14]

[15]

L. Hu, and D. Evans, Secure Aggregation for Wireless Networks, in Pro-
ceedings of the Symposium on Applications and the Internet Workshops
(2003) p.384.

J. Deng, R. Han, and S. Mishra, Security support for in-network
processing in Wireless Sensor Networks, in Proceedings of the 1st ACM
Workshop on Security of Ad Hoc and Sensor Networks (2003).

S. Zhu, S. Setia, and S. Jajodia, LEAP: Efficient Security Mechanisms
for Large-scale Distributed Sensor Networks, in Proceedings of the 10th
ACM Conference on Computer and Communication Security (2003)
pp. 62-72.

D. Wagner, Resilient Aggregation in Sensor Networks, in ACM Work-
shop on Security of Ad Hoc and Sensor Networks (SASN ’04), (2004).

B. Przydatek, D. Song, and A. Perrig, STA: Secure Information Aggre-
gation in Sensor Networks, in Proceedings of the ACM SenSys (2003).

R. C. Merkle, Protocols for public key cryptosystems, in Proceedings of
the IEEE Symposium on Research in Security and Privacy (1980).

18

