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Abstract—Crowd-sensing applications are based on the con-
tribution of user-related context information and as such, they
are particularly vulnerable to privacy-compromising attacks.
In this paper we focus on the problem of information discovery
by data consumers who can pose queries to mobile users
providing sensed data. The way to protect the privacy of
these mobile users is through the use of cloud-based agents,
which obfuscate user location and enforce the sharing practices
of their owners. The cloud agents organise themselves in a
structure, namely a quadtree, that enables queriers to contact
directly the mobile users in the area of interest and, based on
their own criteria, select the ones to get sensing data from. The
tree is kept in a decentralized manner, stored and maintained
by the mobile agents themselves, thus avoiding the privacy
implications of previous, centralized techniques. Our proposed
solution complements and expands upon prior work in the area
while it is shown experimentally to be both scalable, efficient
and easy to maintain.
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I. INTRODUCTION

The increasing availability of sensors on today’s smart-
phones and other everyday devices, carried around by mil-
lions of people, has already opened up new possibilities
for gathering sensed information from our environment.
Currently researchers experiment with these possibilities
and share the vision of a sensor data-sharing infrastruc-
ture, where people and their mobile devices provide their
collected data streams in accessible ways to third parties
interested in integrating and remixing the data for a specific
purpose. This trend is often named Participatory Sensing [1]
and/or Mobile Crowdsensing [2]. A popular example is a
noise mapping application which generates collective noise
maps by aggregating measurements provided by the mobile
phones of volunteers [3]. In other scenarios, people may
monitor air pollution [4], road and traffic conditions [5], etc.

Several of the works on mobile sensing systems started
differentiating very early between two data collection mod-
els. In the first model, users are actively involved in the col-
lection process by deciding on the spot when to report data,
while in the second model sensor sampling occurs whenever
the state of the device (e.g. geographic location) matches the
application’s requirements described in a sensing task [6],
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[7]. But what is common in these architectures, is that the
sensing data collected from the mobile phones are stored in
a centralized server, where they are aggregated, processed
and represented through various interfaces (e.g. statistical
data on a map) or remain available for third parties to query
and select data of interest [8].

Information collected from personal devices like mobile
phones and tagged with GPS data is increasingly recognized
as a kind of personal data, since it can reveal a lot about the
person carrying the device [8], [9]. In addition to location,
mobile sensing application make use of context information
captured from the other sensors on the mobile device making
the privacy implications even bigger. From this perspective,
the collection of sensing data on service-side storage that
the above architectures follow, creates fundamental asym-
metries in the relationship between the users and the service
providers and erodes transparency, confidence and trust.

To better protect user privacy, the user-centric approach
is an alternative solution that gains recognition very rapidly
over the last few years [10]. In our context, it would imply
that sensing data is always handed back to the user upon
completion of the service and remains under his control. It
is the user’s decision to hand over the data again to the same
or another service. This way, individuals can supervise and
limit personal data disclosure and exercise rights of access
to their data held by third parties.

This approach has started to gain momentum recently in
mobile sensing systems, with existing solutions suggesting
a vault-like entity to provide an online trusted storage and
processing [11], [12], [13], [14]. This vault, owned by an
individual, allows users to login from their homes and define
their own privacy policies and review/control who can see
which kind of data, after their collection.

The problem that remains largely unexplored in this case
is that of information discovery from data consumers. We
refer specifically to the case where data consumers, i.e.
queriers, either being applications or physical persons, are
interested in retrieving information according to some re-
quirements (location area, time frame, sensor type, etc.) from
multiple data contributors that satisfy these requirements.
That means they need to search data from data contributor’s
individual data stores, since there is not a central place where



all data is gathered. Given the distributed nature of data
stores controlled by the corresponding data producers, this
is not trivial to do. In addition, the querier might want to
access specific data contributors based on criteria like their
reputation gathered in previous participations, in order to
guarantee some quality in the sensed data.

What makes the problem more challenging is the growing
requirement of protecting queriers’ data access privacy; a
user may want to keep confidential whether (and when)
she accessed the sensed data, the data types she was in-
terested in, or from which nodes she obtained the data, as
the disclosure of such information may be used to infer
additional context about the user and used potentially against
her interest.

So, in this paper, we suggest a mobile node discovering
mechanism that corresponds to range queries about a geo-
graphical area. This mechanism enables, on one side, mobile
users to protect their location privacy according to their own
preferences and enforce access policies to their own data.
On the other hand it enables queriers to contact directly the
mobile users in the area of interest and select the ones to
get sensing data from, based on their own criteria.

Our contributions are the following: (i) We use mobile
agents on the cloud that take over the role of representing
the mobile users to the outer world according to the user’s
location privacy preferences. (ii) The agents interconnect
with each other in such a structure that enables queriers
to discover mobile users in a specific geographic area. This
structure is not stored by a central entity, but it is rather
maintained by the cloud agents in a distributed fashion,
thus avoiding the bottlenecks and the privacy implications
of centralised approaches. (iii) Finally, we conduct extensive
experiments demonstrating the efficiency of this approach in
terms of scalability, load balancing and performance.

The rest of the paper is organised as follows. We first give
an outline of related work in Section II. We then describe our
system model in Section III, emphasising on the structure
and functionality of the cloud agents. Section IV gives a
detailed description of the operations required to maintain a
distributed organisation of the agents in a structure that can
serve range queries. Section V presents experimental results
on the performance of this structure and, finally, Section VI
concludes the paper.

II. RELATED WORK

The use of stationary proxies has been already suggested
in some participatory sensing systems so far, where they are
used as data vaults or brokers for the user [11]. For exam-
ple, Mun et al. proposed Personal Data Vault (PDV) [12],
which functions as individual data storage with fine-grained
access control mechanism, privacy rule recommender, and
trace audit. Choi et al. also presented SensorSafe [13], an
architecture that consists of multiple remote data stores and a
broker enforcing a fine-grained access control by supporting

privacy rules with context/behavior conditions and control
for levels of inferences. What is common in all of the above
systems is that the mobile phones sense and upload their data
to their corresponding proxies proactively. Then the proxy
is responsible to help the user manage this data and make it
available to third parties, functioning as an access control
mechanism. In our work, mobile nodes perform sensing
operations only reactively, when there is a specific query
to which they can respond to.

Drosatos et. al. [14] presented recently a privacy-
respecting solution following the same reactive model,
where mobile agents on the cloud store the data encrypted
and execute a cryptographic protocol based on a homomor-
phic encryption scheme in order to aggregate the data and
make them available. However, this setting does not consider
the privacy of the querier, neither does it enable queriers to
apply selection criteria on specific mobile nodes.

In our solution, cloud proxies interconnect with each other
in a distributed structure, i.e. a quadtree, in order to enable
queriers to discover data producers, while preserving the
location privacy of those producers.

The use of trees has been used in a number of papers,
however in a way that is mostly complementary to ours.
For example, the authors in [15] use balanced trees to
enforce k-anonymity in the spatial domain and conceal user
locations (a user is considered k-anonymous, if its location
is indistinguishable from that of k — 1 other users). The
emphasis here (and, similarly, in the work of [16] which
make use of quadtrees) is on users issuing location based
queries as in the case, for example, where a user asks for all
hospitals close to its current location. As these queries may
compromise user privacy, the use of trees is necessitated by
the need to partition the geometric space and answer quickly
queries about the location of other users in order to guarantee
k-anonymity.

In our case, however, the users want to hide their lo-
cation against a querier who is asking for data provided
by the users. Through an appropriate decomposition of
the space that is maintained in a distributed quad tree, as
opposed to previous approaches which assume a centralized
anonymizer, the users can easily obfuscate their exact lo-
cation according to their own privacy preferences, without
relying on other users as in the k-anonymity approaches.

III. SYSTEM MODEL

Users carry personal sensors, either embedded in their
mobile phones or part of wearable devices, and collect
contextual data from their immediate environment. We will
use the term mobile object (MO) to refer to these entities in
the system who are actively sharing their sensing data with
others. Each MO is also associated with a software agent
running on a cloud, which operates on behalf of the MO
and represents its interests.
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Figure 1: Query privacy in the context of participatory sensing.

A cloud agent serves as a proxy that extends and enhances
the capability of the MO. As it resides on a stationary
infrastructure, it has much higher availability and has not sig-
nificant limitations on storage, communication and energy. It
can thus offload tasks from mobile devices, that can be easily
performed outside the device, and at the same time appear
as the device’s front-end to the rest of the world. This idea is
well supported by the recent directions in cloud computing
for resource-constrained mobile devices [17]. The device can
upload personal information opportunistically to the agent,
while the agent takes over the role of presenting these data
to third-parties according to the owner’s privacy preferences.
In this way the device preserves its limited resources for the
direct needs of its owner.

In our model, there is also the data requestor, or querier,
who is interested in collecting data that satisfy some specific
requirements. These requirements consist of the definition of
a geographic area (range query), but also of additional pa-
rameters, like the kind of sensors needed, the time frame, etc.
For simplicity, in this paper we assume that the geographic
area is the only parameter, but the system can easily be
extended to support additional ones. The goal of the system
is to provide the querier with a list of all the MO agents
that satisfy these requirements. Following that, the querier
can select one or more agents, forward the query to them
and receive the response.

The system preserves the privacy of the querier, by allow-
ing her to stay anonymous (or pseudonymous) throughout
the process. This means that the queries cannot be linked to
the real identity of the querier. However, some access control
mechanism is needed, so that not anybody can take benefit of
the platform’s services without demonstrating some sort of
permission. How this permission can be obtained depends on
the business model of the platform provider. For example,
it could be that the querier has to pay for each “sensing
quantum”. To preserve the queriers privacy, the process

of acquiring such a sensing quantum and the process of
demonstrating it to the MO for enabling the processing of
the query should be unlinkable with each other [18].

As we already mentioned in Section I, we want to enable
the querier to target the list of MOs that move within the
geographic region of interest, and therefore, we need to
offer her some kind of “address book”. In our solution, MO
agents interconnect with each other and form a quadtree,
preserving a hierarchy according to location and location
precision they want to reveal. We will explain in the next
section how this structure is being built and updated. What
is important to emphasise here is that there is no specific
central entity maintaining the topology information, but
instead the network is distributed, with the agents storing
and maintaining its structure.

Figure 1 depicts the general structure of a MO agent. The
MO periodically updates its own agent about the changes
of its location. Given that both entities are controlled by the
user, this update can consist of accurate location information,
depending on the technology used at the mobile device
(GPS, Wi-Fi, etc.) The agent uses the received information
to update its position in the quadtree. As we will see shortly,
the agent does not reveal the location in full precision, but
it obfuscates it according to the privacy preferences of the
user. As a result, the MO agent resides in a place in the tree
that corresponds to the given location and the given level of
obfuscation.

Overall, an agent has several responsibilities with regard
to its MO, as well as the maintenance of the network struc-
ture. The following sub-modules of the agent are responsible
for these operations.

o Location Privacy Manager: It enables the user to set her
location privacy preferences and obfuscates the location
of the MO accordingly. The position of the agent in
the network heavily depends on the precision of the
location information that the MO is willing to reveal.



o Network Manager: Each MO agent takes some share
from the task of network maintenance. They partici-
pate in building and hosting the information about the
network topology and the links between the peers. The
operations in this module are explained in Section IV.

e Claims Verifier: An access control mechanism is in
place that protects the privacy of the querier on one
hand, and on the other hand it enforces sharing policies
defined by the user. These policies enable the user to
control the extent to which her data is shared. In the
general case, the querier presents claims to the MO
agent satisfying the sharing policies of the user and
the Claims Verifier is responsible for verifying these
claims. If the process is successful, it forwards the
query to the Query Processor. Privacy-ABCs [19] is
a technology that can be used here to satisfy these
requirements, in case different attributes of the querier
need to be proved, but instantiations like in [18] can
also be used in simpler cases.

e Query Processor: The MO agent is in charge of pro-
cessing the received queries and enforce the location
sharing policies set by the user. Such policies could
restrict sharing for example to a specific time of the
day, or within specific areas, etc. [20]. The filtering
could also be based on the incentives offered by the
querier.

IV. DISTRIBUTED QUADTREE-BASED OBFUSCATION

As mentioned above, the querier defines a geographic
region and the goal of the system is to enable the querier
to come in contact with the mobile nodes that are currently
within this region. Additionally, the system allows users to
obfuscate their location through their agents using spatial
cloaking, as a way to protect their location privacy.

Obfuscation is the process of degrading the quality of
information about a person’s location, with the aim of
protecting that person’s location privacy. Most research to
date has looked at the use of imprecision to degrade the
quality of location information (e.g., [16], [21]). The concept
of location obfuscation for mobile users was also studied
within the EU-Project PICOS, where it was implemented
and tested with actual users through extensive user trials.
The experiments showed that the concept was actually the
most desirable one amongst a set of measures that helped
mobile users protect their privacy [22].

The need to serve spatial queries on one side and to
enable location obfuscation on the other is best served by
partitioning geographic space with a fixed space grid and
use a region quadree structure as location data indexing
method. In particular, the space is partitioned in two dimen-
sions by decomposing the region into four equal quadrants,
subquadrants, and so on until a predefined limit is reached.
MOs obfuscate their location by spatial cloaking, that is
by declaring their position based on these fixed quadrants,

choosing the one with size closer to the obfuscation level
they want. So, we move away from the typical solution of
obfuscating location by defining a circle or square around the
current location of the MO, which would move along with
the MO and would make location profiling still possible. The
choice of pre-defined quadrants as obfuscation areas better
protect location privacy.

For example, Figure 2a shows an example of 13 mobile
objects scattered in a region. Each of these MOs obfuscate
its real location at different levels, choosing different size
squares. So, for instance, M O; has the biggest level of
obfuscation, while other objects like MOq; and MOq2
declare their location being in more granular squares. This
way of obfuscation implementation is different than classical
solutions, where users are allowed to simply blur their
location by declaring a region of a specific radius around
their true location. Instead, here blurring is done using fixed
squares of different sizes.

The above partition of space can be represented by a
quadtree [23]. In the tree representation, the root node cor-
responds to the entire region we want to cover (e.g., a whole
city). Each child of a node represents a quadrant (labelled
in order NW, NE, SW, SE) of the region. As we go further
down in the tree, nodes represent more accurate location
information, until a predefined limit f,,, (granularity) is
reached. This limit f,,,, is predefined by the system and
it corresponds to the maximum height of the tree. When a
MO agent declares its position within a region, then it is
also registered inside the corresponding tree node.

Each tree node stores two kinds of information: the
addresses of the MOs registered by it and the pointers to
its children. It can be the case that a node has no registered
MOs and we call these kind of nodes control nodes. For
example, Figure 2b shows the quadtree that corresponds
to the region in Figure 2a. In the figure, a tree node with
registered agents is represented with a square, while control
nodes are represented with a circle. We have represented
the missing children of a node with a dashed line. In this
particular example of Figure 2, the maximal allowed location
granularity is fmee = 3 and therefore the height of the
corresponding quadtree is also 3.

There are two differences here, compared to the typical
definition of a quadtree in the bibliography. First, we allow
MOs to be stored in intermediate nodes and not just in the
leaves. Second, we do not create a complete tree, i.e., if a
leaf node has no registered MOs, we do not construct it.

What is important to realise is that the quadtree is not
stored in a central place, but it is maintained in a distributed
fashion among all participating MO agents (peers). Each
peer stores its own share of the tree, while the tree decom-
position is implicitly known by all the peers in the system,
without the need for any communications. Below we explain
in detail the basic operations on the quadtree, in order to
make clear how it is structured and maintained.
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(a) A region and its decomposition in quadrants. Mobile objects
and queries are also depicted.
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(b) Quadtree representation of the region in (a).

Figure 2: A region and its corresponding quadtree.

1) Initialize: At the beginning only the root node exists,
which represents the whole city area. The root is the
only node stored centrally in the service provider, so that
everybody can use it as an entry point to the rest of the tree.
We do not create any node in the tree, until a MO arrives
that wants to register with the corresponding quadrant. In
that case, the node is stored by that MO, according to the
“insert” operation described below.

2) Insert: When a MO agent wants to join the network,
it has to first identify the node that corresponds to its
location and has the right level of granularity, according
to its obfuscation level. So, starting from the the root it
traverses the tree, till it reaches the node representing the
desired region and registers with it.

In case the MO agent reaches a point where there is
no node representing the next level in the path, it takes
over the responsibility to store and maintain that node. It
continues doing so, expanding the tree till it reaches the
desired level. Then, it registers itself with the last node and
remains responsible for maintaining the new part of the tree.

As an example, let us assume that MO with Id = 5,
namely MOs, is the first one that registers with the tree.
Let us assume that M Os has defined its obfuscation level
to be f = 3. That corresponds to level 3 in the quadtree.
Figure 3 shows the exact position where M Os; needs to
register. Since the intermediate nodes under the root do not
exist, M Op creates them together with the leaf node, where
it registers itself and has responsibility for this part (shaded
path). That means, the root node points to the address of
MOs for the NE part of its subtree. Later, M O7 and M Osg
join the same part, as we saw in Figure 2b. They only need

Figure 3: Insertion of MOs in an empty tree. The agent
of the MO creates and stores the branch shown in the gray
area.

to create and maintain the corresponding leaf nodes, where
they register themselves.

3) Delete: MOs are always registered with the quadtree
node that corresponds to their quadrant. When a MO wants
to go offline, it needs to contact the MO that is responsible
for maintaining that node and unregister. Also in the case the
MO moves to another quadrant, a Delete has to be performed
before the object registers with the new node, as we will see
in the Update operation.

If a MO is responsible for maintaining some tree nodes,
it keeps doing so, even if it goes offline and is not registered
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Figure 4: Example of an Update. M Os; moves to the SE
branch of the root. The grey area denotes the nodes stored
by its agent.

with any node. The MO agent keeps running on the cloud
and participates in maintaining the structure of the tree.

4) Update: As MOs move in the city, the quadtree is
changing dynamically and MO agents need to update its
structure. As long as a MO stays inside the same quadrant
no updates are necessary, but once it moves outside it
and into the next one, the following actions need to be
performed. First, it needs to unregister from the previous
quadrant, executing the Delete operation above. Then, it
need to execute an Insert operation, as if the MO just joined
the network. So overall, the update operation consists of the
sequence of the previous two operations, i.e. a Delete and
then an Insert.

Let us assume for example that M O5 moves to the SE part
of the map, close to M O;, maintaining the same obfuscation
level f = 3. As shown in Figure 4, M Oj5 creates two new
tree nodes and registers itself to the leaf node. It also keeps
storing the three tree nodes from its previous position (see
Figure 3), so in total it maintains 5 nodes, shown in the grey
area of Figure 4.

The fact that an agent may be responsible for more than
one part of the three has no impact on the MO itself. Since
the agent is decoupled from the MO and acts as a proxy of
it, it is not limited by the resource constraints of the MO.

5) Cleanup: As MOs move around and they change
quadrants, it can be the case that some nodes in the quadtree
are left with no registered MOs and with no children. In that
case, the corresponding MO agent that stores this node can
delete it from its memory. MO agents periodically invoke
this check locally in their storage, as part of the quadtree
maintenance. For example, in Figure 4, M Os stores two tree
nodes (shown with a dashed line), which will be deleted as
a result of two successive Cleanup operations.

6) Query: In order for a Querier to submit a query, she
first needs to look up the nodes that might be able to answer

the query. The procedure is very similar to the case where a
new MO wants to join the tree. The Querier starts from
the root and traverses the tree till she reaches the node
that is representing the region of interest. The MO agent
maintaining that node will provide the list of the registered
MOs, possibly after verifying the corresponding credentials
from the querier. Now she can communicate with the agents
of MOs residing in the area of interest and see if they can
help her with the query.

However, we allow a query region to also be an arbitrary
region, as shown in Figure 2a by the dashed squares. In
this case, the query region overlaps partially with several
regions of the quadtree, which are at different levels. Since
we don’t know where exactly each MO is inside its region
(as the user decides the level of obfuscation and the precision
of its location), the query will have to return all MOs in
the quadrants that overlap with the query. But this does not
necessarily mean that they will all be inside the query region.

In the example shown in Figure 2a, the Query operation
for @ will return a list of all objects in the overlapping
quadrants, including MO, and M O1;, even though these
two are outside the query area. Any differentiation of those
two MOs at this point would result in loss of their location
privacy, since the querier, by asking several questions, could
infer their exact location. Similarly, in the example of @,
there is actually no MO inside the query area, but the
operation will return M O~.

V. EXPERIMENTAL RESULTS

To evaluate our algorithm of building and maintaining
the quadtree, we implemented a simulator that takes as
input the movements of MOs in the city over a period of
time (corresponding to 100 location updates for each MO)
and builds the corresponding quadtree. To generate a set
of moving objects and their tracks, we used the Network-
based Generator of Moving Objects [24]. As input to the
generator we used the road network of two different cities,
namely Oldenburg in Germany and San Joaquin in CA,
USA. Oldenburg’s road network, has a width of about
9 K'm, while San Joaquin extends to 20 K'm. So, choosing
these two cities we cover the case of a small and a medium
sized city for our simulations.

The output of the generator is a set of moving objects
that move on the road network of the given city. The
distribution of the moving objects in the spatial space is
not uniform throughout the map, but it is correlated to the
density of the network (i.e. the city centre is more busy
than the outer region). In order to test the algorithms, we
maintain the number of the moving objects in the city
constant. The obfuscation level f of all moving objects is
decided randomly following the uniform distribution and
ranges between all levels of the quadtree (from the root until
fmaz)- For simplicity, we assume that MOs do not change
their obfuscation level.



1) Load-balancing and scalability: Figure 5 shows how
the quadtree grows in number of nodes, as the population
of MOs grows in the city. For Oldenburg we have assumed
fmaz = 9 and for San Joaquin f,,4, = 10. In this way,
for both cities the quadtree extends to the same minimum
supported quadrant size, equal to about 15 m. So, as it is
expected, for San Joaquin, a bigger quadtree is needed com-
pared to Oldenburg, for the same number of participating
MOs.
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Figure 5: Size of the quadtree.

However, overall the number of nodes in the quadtree fol-
lows closely the number of MOs. This is shown in Figure 6
as well, where the average number of MOs registered with
each tree node is depicted. In average it is not much more
than one MO registered per node.
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Figure 6: Number of MOs registered per tree node.

What is of particular importance here in terms of per-
formance is the load placed on each MO for storing parts

of the quadtree. Our simulations showed that the average
number of nodes that each MO has to store is very low and
remains unaffected by the total number of MOs. That is to
be expected, since as the MOs increase, the size of the tree
also increases (see Figure 5).

Figure 7 shows the probability mass function (pmf) of the
number of quadtree nodes maintained by each MO agent for
three different values of f,,,.,. The experiment has assumed
500 MOs in Oldenburg. In all three cases one can see that
the vast majority of agents store one or two nodes. For
larger values of f,4., the tree is allowed to grow deeper
and therefore it needs more nodes. So, the probability of
two and three nodes per MOs is slightly increased.
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Figure 7: Probability mass function of the number of tree
nodes maintained by each MO.

2) Updates: Figure 8 shows the frequency that a MO
unregisters from the current node and registers in a new one,
as it moves in the city. For both cities we have assumed 2000
participating MOs. The values in the y-axis are calculated as
a percentage of the overall location updates sent by the MOs
to their agents. So, for Oldenburg the MOs move to a new
quadrant 37.3% of the time on average and their agent needs
to update its position in the quadtree. As shown in the figure,
this frequency can vary a lot and depends on how small the
quadrants are allowed to become (i.e. on the value of f,4.).
This, however, does not have an impact on the MOs as the
agents are separate entities living in the cloud and can easily
handle the update operations.

It is also interesting to see the probability that during
an update operation the tree node that corresponds to the
new quadrant does not exist and the MO needs to create
a new one. Let’s take for example Oldenburg and assume
2000 MOs. Let’s also assume that f,,,., = 9. Figure 9
shows the probability that at least one new node needs to be
created in the quadtree as a result of an update operation.
This probability depends at which level of the tree the MO
moves. For nodes with f < 4 the probability is practically
zero and it reaches up to 22% for nodes with f = 9.
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Figure 9: Probability of creating a new tree node as a result
of a MO update operation.

3) Queries: We are interested to see what is the delay of
performing a query. Since this is implementation dependent,
we decided to use the simulations to measure a correspond-
ing parameter that would give the scale of how the delay
would vary, depending on the size of the query. Specifically
we are interested to see what is the percentage of the whole
tree that a querier has to traverse, in order to discover the
MOs in the overlapping quadrants. For our experiment, we
assume Oldenburg, with a population of 3000 MOs.

To perform the experiment, we post several queries,
choosing some points randomly on the map and considering
them as the centre of the queries’ square. The size of the
squares varies from large ones to smaller ones. In particular,
we take nine different sizes that correspond to the size of
the quadrants on nine different levels of the quadtree. In the
case of Oldenburg taken in this experiment, level 1 in the tree
corresponds to quadrants with diameter of 4.5 K'm, level 2
to 2.25 K'm, and so on, until level 9 where quadrants reach

Average number of traversed nodes (%)

4 5 6
Tree level corrsponding to query size

Figure 10: Percentage of traversed tree noes as a function
of query size.

a diameter of 17.57 m. So, we experimented with queries
of sizes that correspond to this scale (i.e. the tree levels).

Figure 10 shows what is the percentage of the total
quadtree nodes that were traversed by the querier, depending
on the size of the queries that she posts. By traversed we
mean nodes that the querier visits as she executes the Query
command described in Section IV. As the figure depicts, for
the biggest queries, the percentage reaches up to 51.39%,
but it drops by almost a factor of four for every next step.
This is to be expected, since each level divides the space in
four equal quadrants. So, a conclusion one can draw from
Figure 10 is that the presented solution is efficient in case
of queries that are targeted and more granular, compared to
queries that cover large areas of the map.

VI. CONCLUSION

There is a tension between the need to serve spatial
queries on one side and to enable mobile nodes protect
their location privacy on the other. In this paper we have
suggested partitioning geographic space with a fixed space
grid and use a region quadree structure as location data
indexing method in order to enable queriers come in contact
with mobile nodes inside the area of interest. Mobile nodes
are represented by software agents running on the cloud,
which obfuscate location according to their users’ privacy
preferences and publish the result to the outer world.

Once the querier obtains a list of the mobile nodes
inside the geographic area of interest, it can apply further
selection criteria, e.g. based on reputation scores, to guar-
antee high quality responses. Similarly, the nodes can also
apply selection criteria on the queriers, based on their own
sharing preferences. This interaction, or rather “negotiation”,
between the two parties becomes even more challenging,
if both are to maintain their privacy and we are currently
working on it as part of our future work.
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