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Abstract— Nodes in sensor networks do not have enough
topology information to make efficient routing decisions. To relay
messages through intermediate sensors, geographic routing has
been proposed as such a solution. Its greedy nature, however,
makes routing inefficient especially in the presence of topology
voids or holes. In this paper we present GRAViTy (Geographic
Routing Around Voids In any TopologY of sensor networks),
a simple greedy forwarding algorithm that combines compass
routing along with a mechanism that allows packets to explore
the area around voids and bypass them without significant
communication overhead. Using extended simulation results we
show that our mechanism outperforms the right-hand rule
for bypassing voids and that the resulting paths found well
approximate the corresponding shortest paths. GRAViTy uses a
cross-layered approach to improve routing paths for subsequent
packets based on experience gained by former routing decisions.
Furthermore, our protocol responds to topology changes, i.e.
failure of nodes, and efficiently adjusts routing paths towards
the destination.

Index Terms— Geographic routing, Topology, Voids, Greedy
forwarding, Wireless networks

I. I NTRODUCTION

During the past few years there has been an explosive
growth in research devoted to the field of wireless sensor
networks, covering a broad range of areas, from understanding
theoretical issues to technological advances that made the
realization of such networks possible. Routing has become
the foremost problem in such networks. Due to the energy
constraints of sensor nodes, routing involves relaying messages
through a series of intermediate nodes from source to desti-
nation. Moreover, the memory constraints and communication
overhead involved do not allow the use of routing tables as
in wired networks. So, in random topologies the network has
to discover routes that fulfill certain criteria such as minimum
power utilization and/or minimum path length.

One of the proposed techniques for routing in sensor net-
works is geographic routing [1], [2], where each node has
knowledge of its position as well as the position of the base
station, and therefore can forward the data packets closer
to the destination. Geographic routing is efficient in dense

networks where the packet can always be forwarded under
this greedy forwarding strategy. However, in more sparse
topologies greedy forwarding may fail to find a path towards
the destination even though such paths may exist. In these
cases the packet reaches an intermediate node that has no
neighbors closer to the destination, so making a greedy choice
cannot result in any further progress. Therefore, alternative
strategies must be tried until greedy forwarding can be used
again.

To overcome these local minima and help packets advance
further in the network, [3], [4] propose the use of the “right-
hand rule” that routes packets counter-clockwise along a
face of the graph until they reach a node that is closer to
the destination than the one where the packet entered this
perimeter traversal mode. However, as we will see later, this
solution does not provide efficient routes for voids that do not
have a closed (convex) shape. Furthermore, it requires the extra
cost of graph planarization which eliminates several edgesof
the graph. This usually results in longer paths as the node has
less choices for forwarding a packet.

In this work, we propose a simple mechanism to help
packets overcome local minima. When the packet cannot be
forwarded to a node closer to the destination, still a greedy
choice is made from the other neighbors of the node, even
if that means the packet will head backwards. By making
sure that the packet is not sent twice to the same node, we
eventually reach a node where positive progress can be made.
While early packets make this additional effort of “discover-
ing” the topology, we employ across-layeredapproach to take
advantage of the experience gained by this effort and improve
energy and communication efficiency of routing subsequent
packets. We create an interdependency between the physical
and the routing layer to relate routing decisions of nodes with
those of their neighbors and improve the routing paths.

GRAViTy (Geographic Routing Around Voids In any Topol-
ogY of sensor networks) is a localized routing protocol which
efficiently produce paths that compete with the shortest paths
under the presence of topological voids. The protocol has the
following properties:
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1) Direction-based routing. Each node estimates the direc-
tion of the base station as well as that of its neighbors
and forwards the packet to the node with the direction
closest to thedirection of the base station. The paths
produced are single-paths.

2) Localization. Each node makes decisions based solely on
local information, that is information gained from facts
within its neighborhood. This includes the location of
its neighbors with respect to the base station as well as
routing decisions that they make.

3) Loop-freedom and memorization: Under the presence of
routing holes, there may not always exist next hops with
positive advantage towards the destination. In this case,
localized, greedy algorithms are not loop-free unless
they use some kind of memorization. Some information
about past traffic must be stored either in the routed
packet or in the nodes. Keeping this extra information in
the packet increases its length, and makes transmission
by nodes more expensive. Our protocol stores some
information about past traffic only in certain nodes
and only for a short period of time. Moreover, the
information stored is bounded, since it concerns traffic
only in the neighborhood of each node.

4) Minimization of distance traveled. Our protocol opti-
mizes the distance traversed by the routed packet, using
only local information. It turns out that the resulting
path is very close to the shortest path from source to
destination.

5) Scalability. Our routing algorithm performs well for an
arbitrary number of nodes. Scalability is tightly related
to the notion of localization. As long as each node
selects the next hop based solely on local information,
the performance of the algorithm is not affected by the
network size.

6) Guaranteed message delivery. Our algorithm guarantees
message delivery provided the network remains con-
nected.

7) Robustness. The accuracy of destination of the base
station and that of neighboring nodes does not affect
the efficiency of our protocol.

In what follows we assume that the number of sensor nodes
in the network isN and there is a single destination pointD

that represents the center where data should be sent. We denote
the node that sensed the event byS. We assume that each
node has the following capabilities (in Section IV we will see
how these assumptions are validated by current technological
advancements):

1) It can estimate the Direction of Arrival (DoA) of a
received transmission, and

2) It knows the general direction of the base stationD.

We also assume that the sensor nodes are statically located
after deployment. Hence we do not consider here a dynamic
sensor network, where sensors are mobile. Finally, note that
each sensor node isnot assumed to know its location, since
our forwarding strategy is based on angles (direction) and not
on coordinates (position).

The rest of the paper is organized as follows: In Section

II, we discuss related work and in Section III we describe
GRAViTy in detail . In particular, we start by showing how our
strategy compares with perimeter routing under the presence
of different types of voids and then show how to enhance our
protocol by looking at subsequent packets that take advantage
of the knowledge gained in the past. We also demonstrate
how the protocol adjusts to topological changes due to node
failures. In Section IV, we discuss some implementation issues
while in Section V, we present our experimental results and
argue about the efficiency of our protocol. Finally, we conclude
in Section VI.

II. RELATED WORK

In early work on geographic routing [1], [2] the notion of
greedy forwarding was introduced, where the location of a
node is taken into account in order to make progress towards
the destination. However, greedy forwarding fails when a
node has no neighbors closer to the destination. A similar
scheme has been proposed in [5] where the direction of
the neighboring nodes is used as the criterion for greedy
forwarding.

Under the presence of routing holes, greedy forwarding
fails and alternative strategies must be used in order to make
progress until greedy forwarding can resume. As we already
mentioned, one popular solution isface routing[3], [4], [6]
(also called perimeter routing or planar graph traversal),which
uses face changes and the right-hand-rule to route around the
void. In order for face routing to work correctly, the nodes
must run a distributed algorithm that planarizes the network
graph. Besides the extra overhead this operation imposes, it
eliminates edges from the graph, resulting in less possible
choices for nodes to forward packets and therefore inefficient
path lengths.

A proposal to replace the right-hand rule by distance up-
grading is presented in [7]. During an initial phase each node
learns its distance to the base station. The packet is alwaysfor-
warded to the neighbor with the smallest distance. The authors
propose a way to transform the routing graph by artificially
increasing the distance value of dead-ends, so the packet is
never forwarded to them. Their strategy however requires an
additional overhead of control packets until all dead-endsare
removed by the network. This overhead is proportional to the
number of voids and the network size, and can be increased
substantially for sparse networks. Furthermore, without the
presence of artificially created holes, the algorithm behaves
the same as GPSR in random networks.

Other strategies have been proposed for bypassing routing
holes that also avoid the use of perimeter mode. In [8],
the base station is reached by having nodes memorizing
the shapes of holes so that when a packet gets stuck the
algorithm computes the shorter side of a hole and forwards the
packet accordingly. However, when holes are large, the high
communication overhead and memorization in nodes along the
holes is increased.

The use of depth first search for route discovery in geo-
graphic routing has been proposed in [9] and [10]. In [9], each
node puts its name and address on the packet and forwards it
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to the neighbor that minimizes the Euclidean distance. Those
neighbors that have forwarded the packet in the past are
excluded from the legitimate candidates. However, this kind
of information in the packet increases its transmission energy
and makes the protocol less scalable for large network sizes.
In [10], the authors show how to use DFS in order to construct
QoS paths. The whole DFS path from source to destination
is followed, assuming the use of GPS. The nodes on the
created path memorize both the previous and the next node
on the path. Each time a node receives the same packet twice,
it returns it to the sender in order to avoid loops, resulting
in excess transmissions. Furthermore, no power consumption
model is assumed, so the energy efficiency of the algorithm
is not shown, and no comparison with GPSR is attempted.

A completely different forwarding strategy in geographic
routing is the restricted directional flooding. For examplein
[11] a protocol is presented where information on a sensed
event is propagated towards a receiving center by activating
only those nodes that lie very close to the optimal path between
the source of the event and the destination. By changing a
parameter of the protocol, the average size of the propagating
front of nodes can be configured, where the front is simply
the nodes that lie at the edge of the transmission zone towards
the destination. If this front is set bigger than an obstacleor
void, then obstacles can be bypassed.

Finally, the use of a cross-layered approach has been pro-
posed in [12], where it has been pointed out that truly efficient
use of network resources and optimization of end-to-end
quality in wireless networks requires exchange of information
across the layers that would not be possible with the traditional
layer interfaces. Recently, the cross-layered approach has been
used to geographical routing in sensor networks in order to
improve its energy efficiency [13].

III. GRAV ITY

In this section we discuss GRAViTy in detail. We break
down the description in various subsections and “rules” to
ease the readability of the protocol and motivate the need for
each “enhancement”.

A. Routing a single packet

We start by describing how nodes can forward a single
packet, assuming no prior routing history of the network.
When a node, sayF (Figure 1), receives a packet for des-
tination D, it needs to decide which of its neighbors the
packet should be forwarded to. Letφi = (FPiD) be the angle
between nodeF , its neighborPi and the destinationD. Then
F forwards the packet according to the following local rule:

Rule 1: Each nodeF forwards a packet to the neighborPi

with the maximum angleφi = (FPiD).

When nodePi receives the packet from nodeF , it will
mark nodeF as its parent and F will mark node Pi as
its child. In order for nodeF to decide which of its 1-hop
neighbors has the best forwarding angle, we assume that it
keeps in memory a table(〈Pi, φi〉) with all its neighborsPi

P
i

Fig. 1. Forwarding strategy based on direction. NodeF forwards the packet
to the neighborPi with the largest angle. In this example, the node with the
141

◦ angle will be selected.

and their corresponding anglesφi. This table could have been
created, for example, in an initial phase after deployment of
the network where each node broadcasts a request to all its
neighbors to send them the angle at which they would forward
a packet originating from itself.

Neighbors compute this angle by using information avail-
able to them, i.e. the DoA of the received “request” signal and
the direction of the base station,D. The table of angles created
by the requesting node is not to be used as a routing table.
It just stores information that will facilitate the application of
Rule 1, and the rules to follow.

Angle φ can range from0 to 180 degrees. The closer
a node’s angle is to180◦, the closer that node is to the
forward direction towards the destination. A node with a small
angle is a backward node. If there exists no node in the
forward direction, we don’t consider the node a dead-end. The
algorithm will choose a backward node. Therefore, a packet
following this greedy strategy does not always move closer to
the destination.

The fact that the packet can go backwards means that
eventually the packet may reach a node that is already part of
the routing path, creating a loop. In this case we would have
to drop the packet. But since we want to guarantee delivery to
the destination, we need an additional rule to prevent loops.

Rule 2: A node cannot forward the packet to a neighbor,
which has forwarded it before.

This suggests that a nodeF will choose to forward the
packet to a neighborPi according to Rule 1, unless that
neighbor has already forwarded that packet (belongs to the
routing path), in which case nodeF will choose to forward
the packet to the neighbor with the next largest angle. In order
to realize that, we need to find a way so that by the time a
packet reaches a node, that node knows which of its neighbors
have forwarded the packet before and exclude them from the
forwarding decision. If this is not the case, those neighbors
will have to receive the packet and send it back to the sender
node, resulting in two excess broadcasts. To avoid these excess
transmissions we employ across-layeredapproach [12].

Wireless networks normally use a single-frequency commu-
nication model. When a packet is broadcasted, it is heard by
all nodes in the transmission range of the sender. These nodes
have to open the header of the packet (in the MAC layer),
where the sender and recipient are included, and check if
they are the indented receivers. If not, they stop receivingand
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the information of the packet’s sender and recipient addresses
can be passed to the routing level of the node and be stored.
So, when that node needs to make a forwarding decision, it
will already know which of its neighbors have received and
forwarded the packet, since that information can be found in
the overheard packets.

Therefore, in order to prevent loops, each node that par-
ticipates in the routing procedure must memorize traffic in-
formation in its neighborhood for a short period of time.
This means that no extra information is stored inside the
packet, which otherwise would increase transmission energy.
The only memory requirement is that nodes must store the
routing information of packets that were forwarded in their
neighborhood in the recent past. As we will see in Section
V, depending on the network size, only a few couples of
integers need to be stored in each node, which is feasible for
the memory space available in sensor nodes.

So, by receiving a packet, a node has all necessary infor-
mation to select one of its neighbors to forward the packet
to. However, there is the case where the packet has reached a
local minimum and the only available neighbor is the node that
sent it (the parent). Then we say that the packet has reached
a dead-endand according to rules 1 and 2, it cannot make
any more progress. The only way to recover from this local
maximum is to send the packet back to the parent. We call
this actionbacktrackingand we modify Rule 2 as follows:

Rule 2 (revised): A nodeu cannot forward the packet to a
neighbor that has forwarded it before. If no other neighbors
exist, the packet is forwarded to the node’s parent (backtrack-
ing). Then we say that nodeu is a dead-end.

When this is the case, the parent excludesu from future
transmissions and eliminates it from its list of valid neighbors.
In case other neighbors exist, the parent will pick the best one
according to rules 1 and 2, and send the packet to it, updating
its child pointer. Otherwise, it will backtrack to its parent and
proceed accordingly.

Figure 2 illustrates the case of a dead-end. NodeF has
forwarded the packet to nodeP , which in its turn chooses to
forward it to nodeB, as the best option. NodeB has no other
neighbors thanP , so backtracking is necessary. As a result,
nodeB sends the packet back to nodeP . NodeP has only
one option now: to forward the packet to nodeN , sinceF is
its parent andB a backtracking node.

B. Bypassing topological voids

Often, in sensor networks we have to deal with “holes”,
where a node has no forward neighbors towards the desti-
nation. These holes can be formed either due to topological
voids or by failure of sensor nodes due to a number of reasons
(battery depletion, physical damage, malfunctioning). So, a
routing path based on greedy forwarding may be blocked from
moving closer to the base station due to the lack of relaying
nodes to cross the void. In this case the packet must find its
way by moving “around” the void.

D

S

F

P
B

N

Fig. 2. Packet is routed from source nodeS to destinationD. When the
packet reaches a dead-end (nodeB) it backtracks and follows the next best
path.

C

S

D

Open
void

Closed
void

G

Fig. 3. Behavior of GPSR in the presence of voids. At nodeC, the packet
enters perimeter mode exploring the perimeter of the graph and returns to
greedy mode again at nodeG.

We distinguish between two different kinds of voids: closed
voids, and open voids (see Figure 3). In closed voids, once a
packet has reached a point at the face of the void where it
cannot move further there are two different directions thatit
can travel in order to bypass it, even though one may be more
efficient (i.e. shorter) than the other. In open voids, thereis
only one correct direction. The other direction will not lead
to the destination, and therefore we need to head backwards
and choose a different way.

By having only local information available, the routing path
will have to “explore” the topology in order to find its way to
the destination. Using the right-hand rule, inefficient paths may
be produced, exactly because the counter-clock-wise direction
is always used. This may cause the packet to be routed
along the boundary of the whole graph, before it reaches the
destination. This case is shown in Figure 3, where GPSR was
employed. The packet starts at nodeS and is forwarded in
greedy mode until nodeC. In nodeC the algorithm turns to
perimeter routing and traverses the boundary of the graph until
nodeG is reached (the first node closer to destination thanC),
where it turns back to greedy mode again.
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D
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void

Closed
void

Fig. 4. Routing around voids with GRAViTy. The packet explores the
topology around the open void until it finds the way through node F .

In Figure 4 it is shown how GRAViTy manages to find
a path to the destination. The packet (which is routed as
indicated by the links in bold) reaches nodeC and cannot
make any further progress towards the destination. By avoiding
nodes that has visited before, the algorithm continues choosing
the best possible direction according to the greedy criterion.
However the packet does not always make a positive progress.
It rather “exhausts” the area around the void, until it finds a
way to move forward. Of course, it still possible that the packet
may do a lot of unnecessary work, but as we will see in the
experimental section this is rarely the case.

C. Routing subsequent traffic

In the previous sections we saw how packets have to
explore the graph in order to find their way to the destination.
Subsequent traffic could gain from this experience and save
the effort of excess hops. We achieve this by storing a
small amount of information in the nodes. In particular, the
child pointer is the only information that is needed. When
forwarding a packet through some neighborhood for the first
time, the child pointers that are created in nodes can help
improve substantially the routing paths of subsequent packets.
We begin by defining the following rule:

Rule 3: When an intermediate node with its child pointer
not being null receives a packet, it will forward the packet
to the preselected child without making any other routing
decisions.

So, a packet that is routed to the base station needs only
to discover a path until it reaches a node that has a child
pointer. Thereafter, it will follow a predetermined path, without
any excess effort. This follows common intuition since if a
previous packet has explored the topology to find an efficient
path then any subsequent traffic that reaches the same node
will have to follow the same path, eventually. So, we can
gain from past “experience”. However, there are three ways to
improve upon this situation:

D

B

F

S

Q

A

E

Fig. 5. Child pointers created, after a single packet has been routed from
sourceS to destinationD (as shown in Figure 4). Pointers are directional
(not shown here) and point to the direction that leads toD.

1) Eliminate dead-ends: When a node backtracks to its
parent, then the parent can mark this child in its table
and never forward a packet to it again. If the packet
didn’t find a way to the destination through that node,
subsequent traffic won’t find one either.

2) Eliminate triangles: When a node forwards the packet
to one of its neighbor, and that neighbor forwards it to
another neighbor of the initial sender, then a shortcut
can be created bypassing the intermediate neighbor.

3) Eliminate crossings: When a packet is being forwarded
across the neighborhood of a nodeafter that node has
forwarded the same packet, then the node can update its
child pointer by overhearing to this transmission.

The latter case can be observed in Figure 4. NodeE

forwards the packet to nodeF . Node A that has forwarded
that packet to nodeB in the past, upon overhearing this trans-
mission can update its child pointer to point at its neighborF .
The next time a packet arrives at nodeA, it will be forwarded
directly to nodeF , eliminating the “closed circuit” and saving
11 hops from the routing path. Note that in this case, the
resulting path is also the shortest path. Moreover, the same
broadcast will be heard byB as well, which since it has
participated in the routing path it will also update its child
pointer toF .

So, nodes that make a greedy choice and forward the packet
can gain substantial information by the routing decisions of
their neighbors. We formulate the above three cases as follows:

Rule 4: For a broadcast of a packet from nodeu to node
v, each node that overhears it and has forwarded that packet
before updates its child pointer tov, if v belongs to its
neighbors, or else it updates it tou.

This applies also in the case of backtracking. Since the
packet follows a path that does not contain loops (due to Rule
2), then updating child pointers according to Rule 3 will not
create loops either.



6 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005.c©TROUBADOR PUBLISHING LTD)

S

A F

B
E

D

Q

R

W

Fig. 6. Child pointers created after routing packets generated by random
source nodes. They all point to the direction that leads to destinationD.

The child pointers created from the routing of the packet
from source nodeS to destinationD, as we described in Figure
4, are shown in Figure 5. As we see, the excess communication
effort of initial packets trying to reach the destination isnot
wasted. If a packet in an “unexplored” part of the graph takes
a way that does not lead to the destination (because of its
myopic strategy) and then have to turn back and choose a
different way, it has still created the right child pointerson
its passage to be used by other nodes that need to send data
to the destination. So, if now nodeB needs to send data to
D, it will directly forward the packet to nodeF , according to
Rule 3, bypassing the greedy forwarding procedure that would
result in excess hops. Likewise, nodeQ that does not have a
child pointer would forward the packet to nodeS according
to the greedy criterion, and from then on, the constructed path
of child pointers would be followed.

We applied these rules to the network of Figure 4 by
choosing nodes at random and have them generate packets
which are routed to nodeD. The result is shown in Figure 6.
In the figure, only the child pointers are shown and not the
communication links. What has been created is a tree of paths
that connects each node of the network with the destination
through a single path. As we will see in the experimental
section these paths are on the average about7% longer than
their corresponding shortest paths and a lot better than the
paths produced by GPSR.

D. Dealing with node failures

Since our routing protocol creates single paths, we have to
deal with node failures. A node may have its energy exhausted
or fail unexpectedly, cutting-off paths that go through it.Then,
these paths must be restored, bypassing the dead node.

Since nodes are blind beyond their neighborhood, it is the
packet that has to re-discover a new path as if it is forwarded
for the first time (Section III-A). A dead node may have
created a new void or extended an old one, resulting in a
completely different topology of the network, and thus the

D

W

R

Fig. 7. Adjusting to topological changes due to nodeR failure.

paths may have to change substantially. So, we define the
following rule to deal with node failures:

Rule 5: When a packet reaches a node that its child has
failed, then that node sets a flag in the packet indicating that
any node which receives it should forward it by applying the
greedy criterion all over again, ignoring its child pointer(if
any).

That is, all the described rules so far still apply, except Rule
4. The node that its child node has failed will have to erase
that node from its table and forward the packer again, applying
Rule 1 and setting the flag. The same applies for the rest of
the nodes: any node receiving that packet will erase its child
pointer and decide where to forward the packer according to
the greedy criterion, creating a new child pointer. The packet
will be routed like it is the first packet in the network (as
described in Section III-A) until it reaches the destination D.

For example, let’s assume that nodeR (Figure 6) fails.
Suppose that a new packet is again generated at nodeS and
been routed following the discovered path until nodeF . Then
nodeF will realize that it’s child nodeR has failed. NodeF
sets the flag in the packet and forwards it to the node with
the maximum angle (excluding of course nodeR). After that,
the packet will be re-routed like it was the first packet in the
network, creating new paths (i.e. child pointers), as shownin
Figure 7. As it was expected, the next efficient path to reach
the destination is through nodeW .

To show that the topology (and the routing paths) may
have to change substantially due to node failures, assume that
nodeW fails too. The resulting paths are shown in Figure 8.
Comparing with Figure 7 we see that packets originated from
the left part of the network now have to follow completely
different paths. In Section V, we present simulation results
that show how much this procedure of re-discovering paths
burdens the efficiency of the protocol.
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W

D

R

Fig. 8. Adjusting to topological changes due to nodeW failure.

if

if

i

else if

if

if

else

for

if

if

if

else

else

packet          {

child != null

{

forward the packet to child

child == null

parent == null

p      = sender of the packet

all of w’s neighbors have

forwarded that packet

send packet to w’s parent

{

all neighbors that have not

the packet && are not dead-ends

find neighbor N with the largest angle

forward packet to N

child = N

}

}

overheard packet transmission

from node u to node v

w have forwarded that packet before

v belongs to your neighbors

child = v

child = u

store "u has forwarded packet p"

f

else

sender == child

mark child as dead-end

child = null

}

arent

forwarded

received

Fig. 9. Algorithmic description of the GRAViTy protocol for each nodew
of the network.

E. Summarizing the protocol

Figure 9 summarizes the GRAViTy protocol for routing
a packet according to the rules we have presented so far.
Any data structures needed to store the necessary information
for this algorithm should result easily from the algorithmic
description. However, note that memory requirements are
discussed in Section V-A.4.

What was described in section III-D is not incorporated in
Figure 9, in order to keep the algorithm more simple. So, Rule
5 is not included in the figure. In case a node tries to send
a packet and the receiver is reported dead, then the sender
must remove that node from its table, reset its child pointer
and set a flag in the packet, as described in section III-D.
Then it looks for a new receiver. In the same way, if a packet
is received with the packet’s flag set, any previous child and

parent pointers should be reset.

IV. I MPLEMENTATION ISSUES

In order to be able to implement the proposed algorithm, we
assume that each sensor node has the ability to estimate the
Direction of Arrival (DoA) of incident electromagnetic waves.
DoA measurements can be implemented in a cost effective
way on sensor nodes with the use of switched antenna arrays
with an accuracy of 5 degrees [14], [15]. In the experimental
analysis at Section V we show how this error in estimation
affects the performance of GRAViTy.

Knowing the incident angle of arrival, all nodes are able to
execute the proposed conditional propagation algorithm. It is
therefore assumed that each node can estimate the DoA of data
packets received from nearby nodes, and it can estimate the
relative direction of the sinkD, provided that the sink sends
out beacon messages during an initial phase after deployment
and these can be captured by all the nodes in the network. An
alternative way for nodes to calculate the DoA of messages
coming from their neighbors can be used if nodes know their
positions in the network by acquiring it from some location
service [16], or by computing it using a hash function in a
data-centric storage scheme [17].

Another important characteristic of our protocol is the fact
that nodes gain information by overhearing packets broad-
casted by their neighbors to other nodes. The transmitter and
recipient addresses are included in the packet’s MAC header,
as well as a sequence control field used to uniquely identify
packets. No extra communication overhead is required to gain
this information. The only extra energy needed is to keep the
nodes, which are inside the transmission range of the node
transmitting, awake in order to acquire the MAC header of
the packet. However, as we have described, this information
reduces substantially the routing path, so overall we gain in
terms of energy efficiency.

V. EXPERIMENTAL ANALYSIS

All experiments were carried out on connected random unit
graphs. For each experiment the network was deployed in an
area with dimensions(500, 500). Each of the nodes was placed
by choosing its coordinates at random in that interval. We
have also assumed a collision-free environment to simplify
the simulations and gain a quick insight into several major
properties of our algorithm.

Parameters that we consider important in defining a net-
working context in our experiments are network size (number
of nodes) and node density (average number of neighbors for
each node). Since our deployment area is the same for each
experiment, we achieve different node densities by changing
the radius of the nodes. Our experiments were designed to test
the protocol in terms of distance traversed by packets.

A. Routing first packet

The first round of experiments is intended to evaluate the
performance of routing a single packet in an unexplored
random topology. For each experiment the base station was
defined to be the upper, rightmost node of the topology
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and the source be the lower, leftmost node. In this way we
maximize the distance to be traversed by the packet to reach
the destination. Since the topologies were random, open and
closed voids of different sizes were formed and the packet had
to explore and bypass them.

1) Impact of network size:We generated 6000 different
random topologies for each network size. For each topology
we generated a packet that had to be routed from source to
destination and computed for each one theratio of the found
path to the shortest path. This is calculated as the sum of hop
lengths that the packet traversed over the sum of hop lengths
of the corresponding shortest path. Therefore, the ratio shows
how much longer the resulted path is compared to the shortest
path. Figure 10 shows the mean values of the ratio for different
network sizes and a fixed density of 8 neighbors on average.
For comparison purposes, the corresponding ratio for GPSR
is also shown.
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Fig. 10. Ratio of shortest paths found by GPSR and GRAViTy as afunction
of the network size. The average number of neighbors of each node is 8.

As we see, GRAViTy results in path lengths that are
considerably shorter than those of GPSR. As the network size
increases, GPSR becomes more inefficient while GRAViTy
maintains nearly the same ratio. This is because the impact of
dead-ends in the topology can be significant for GPSR as the
network size increases. Packets will have to be routed out via
longer paths based on the right-hand rule. On the other hand,
GRAViTy remains close to the local maximum and explores
nearby paths until it finds a way to bypass it.

2) Impact of network density:We next study the effect of
different network densities on the average length of routing
paths. Our experiments were done on networks of 500 nodes.
As the density drops, the sizes of the routing holes increase,
the topology becomes more sparse and it is harder for a
geographical routing algorithm to find a path to the destination.

Figure 11 shows that in the case of sparse networks, routing
paths are considerably longer than shortest paths. As the
network becomes more dense, the ratio drops fast and becomes
almost 1 for average number of neighbors above 10. In such
networks the routing holes are eliminated and both GPSR
and GRAViTy manage to find routing paths by just greedy
forwarding.

In sparse networks GPSR will have to go into perimeter
routing more often which results in longer paths. Likewise,
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Fig. 11. Ratio of shortest paths found by GPSR and GRAViTy as afunction
of the network density.
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Fig. 12. Average length of backtracking as a function of the network density.

packets routed by GRAViTy will have to traverse larger paths
because of backtracking. However, Figure 12 shows that the
excess distance traversed because of backtracking is only a
small fraction of the overall path. For example, if we assume
8 neighbors on the average for each node, only3% of the path
length is due to backtracking.

3) Impact of direction inaccuracy:So far in our exper-
iments we have assumed ideal antennas. However, as we
mentioned in Section IV, realistic switched antenna arrays
have an accuracy of±5 degrees. So, in Figure 13 we repeated
the experiment of the impact of network size on the average
length of routing paths, including a statistical error in direction
estimation of±5 degrees.

This statistical error makes the forwarding procedure prob-
abilistic. The next hop is not always chosen to be the node
with the best direction towards the destination. Furthermore,
as the network gets larger, there is a higher probability of
relative direction inaccuracy. As Figure 13 shows, for small
network sizes the error in direction estimation does not affect
the performance of the protocol, but for sizes higher then 500
nodes the performance is improved. This perhaps suggests
that the use of randomization may further improve the paths
found. Recently, other researchers have studied the impactof
probabilistic selection of candidate neighbors [18] and have
shown that it can also improve the lifetime of the network
and decrease the overall end-to-end delay. In future research
we indent to study more thoroughly the effect of probabilistic
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Fig. 13. Direction inaccuracy of directional antennas improves the perfor-
mance of GRAViTy.

forwarding in GRAViTy.
4) Memory requirements:As we described in section 3,

in order to avoid loops, nodes overhear their neighbor’s
transmissions in order to be aware which of those are part
of the routing path. In this way when a node has a packet
to forward, it will remove from consideration the neighbors
which have forwarded the packet themselves. The required
information to be stored is the tuple (packet ID, sender ID),
where packet ID is a unique identifier of the packet and sender
ID is the ID of the node that sent it.

In order to see how much memory is required by the
nodes to store this information, we simulated topologies where
several packets were injected in the network at thesame
time. When a packet reached the destination, we deleted from
the nodes any entries with the corresponding packet ID and
injected in the network a new packet. In this way, there were
always a predefined number of packets in the network. Figure
14 shows the results for different network sizes. All of the
networks in our experiments had the same density, i.e. the
average number of neighbors for each node was 8.
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Fig. 14. Average number of entries stored in a node’s memory withrespect
to concurrent packets in the network.

As it can been seen in Figure 14, we reached up to 130
concurrent packets in the network. However, in a realistic
sensor network, it is not likely that there will exist so many
packets at the same time for two reasons: First, because the
nature of the data model in sensor networks is event-based

and most of the nodes are asleep except those that connect
the source of an event to the destination. Most importantly,
however, because data aggregation is applied to intermediate
nodes. So, even if multiple events happen at the same time and
generate a lot of network traffic, information is aggregatedas
it reaches the same nodes from different directions.

In our experiments we did not consider any data aggrega-
tion. So, in this case, when 10 packets exist in the network,
the maximum number of memory entries any node will have
to store is 5. When we increase the number of packets by a
factor of 10, the number of entries increase by a factor of 3, in
the case of network size equal to 800 nodes, and by a factor of
4, in the case of 400 nodes. In any case, we believe that these
memory requirements are consistent with the space available
in sensor nodes’ chips today.

B. Routing subsequent traffic

The routing paths are improved when subsequent pack-
ets are routed using child pointers created in the network.
Explored portions of the topology can be traversed with no
excess hops. In this experimental setting we investigated the
performance of GRAViTy on routing 500 packets from random
sources in different random topologies of 400 nodes, and show
how much the routing path lengths change as more and more
packets are injected into the network.

As it is shown in Figure 15, the path lengths rapidly
approximate the corresponding shortest path lengths, after
a few packets have been injected in the network, and they
become only7% longer than the optimum. In the same figure,
the corresponding ratio for GPSR is shown, which does not
change as more traffic is routed in the network. GPSR always
provides the same paths and does not improve with time.

Since nodes were routing several packets, we added an
energy model in order to make the experiment more realistic
and simulate the effect of nodes being energy depleted. In this
case, GRAViTy employs the mechanism described in Section
6 in order to reset child pointers and adjust to the resulting
topology changes.

A free space propagation with data rate set to 2 MB/s is
assumed. Packet lengths are 10 Kbit for data packets and
2 Kbit for control packets (RTS/CTS/ACK). Each node has
an initial energy of 0.7 Joules. It consumes 660 mW for
transmission, 395 mW for reception and 35 mW in the idle
state. A node is considered non-functional if its energy level
reaches zero.

Figure 16 shows how the ratio of the average path length
over the shortest path length is changed, as more packets are
routed until the network becomesdisconnected. In the begin-
ning the ratio drops fast and the performance is substantially
improved, as the child pointers are created and packets can
follow them to reach the destination. However, as more and
more packets are routed, nodes start being energy exhausted
and turned off. Then packets need to rediscover the new
topological changes and find new routes to the destination.
Therefore, the ratio slowly increases as nodes are leaving the
network. However, as it can be seen in the figure, the paths
remain satisfactory and it is the network that first becomes
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Fig. 15. Average path length as a function of packets routed by the network.
The use of past information clearly improves the paths found.
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Fig. 16. Impact of node failures to the average length of routing paths.

disconnected before the paths deteriorate a lot. Furthermore,
in our examples no aggregation has been used to help keep
nodes alive for longer intervals and avoid the frequent path
correction induced by the energy depletion of sensors.

VI. CONCLUSIONS

In this paper we presented GRAViTy, a protocol for geo-
graphic routing with greedy forwarding based on the direction
of the node’s neighbors and the final destination. The protocol
uses only local information, adapts to bad network topologies
where voids exist and outperforms GPSR in this respect.
To improve path lengths we exploited packet overhearing
at the MAC layer that provides useful information to the
network layer and help nodes avoid excess transmissions.
We believe that cross-layered approaches can help designing
efficient protocols for sensor networks and therefore lower
layer architectures should provide interfaces that allow some
level of customization and transparency.

Our design goal towards a loop-free, single path routing
algorithm that guarantees delivery has proved successful.
However, the more general question of developing realistic
local routing algorithms remains. In our simulations we ob-
served that inserting a statistical error in direction calculations
improved the path lengths. In the future we plan to investi-
gate how other details of a real implementations affect our
protocol’s performance.
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