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Chapter

Introduction

1.1 Motivation

During the past few years there has been an explosive growth in the research
devoted to the field of wireless sensor networks (WSN), covering a broad range
of areas, from understanding theoretical issues to technological advances that
made the realization of such networks possible. These networks use hundreds
to thousands of inexpensive wireless sensor nodes (motes) over an area for the
purpose of monitoring certain phenomena and capture geographically distinct
measurements over a long period of time. Nodes employed in sensor networks
are characterized by limited resources such as storage, computational and com-
munication capabilities. The power of sensor networks, however, lies exactly in
the fact that their nodes are so small and cheap to build that a large number of
them can be used to cover an extended geographical area.

The pervasive interconnection of such devices has given birth to a broad class
of exciting new applications in several areas of our lives, including environment
and habitat monitoring, healthcare applications, home automation, and traf-
fic control. However, as every network, sensor networks are exposed to security
threats which, if not properly addressed, can exclude them to be deployed in the
envisaged scenarios. Their wireless and distributed nature and the serious con-
straints in node battery power prevent previously known security approaches to
be deployed and has created a large number of vulnerabilities that attackers can
exploit, in order to gain access in the network and the information transferred
within.

For example, in an outsider attack, where the attacker node is not an au-
thorized participant of the sensor network, it may inject useless packets in the
network in order to exhaust the energy levels of the nodes, or passively eaves-
drop on the network’s traffic and retrieve secret information. Even worse, in an
insider attack, the attacker has compromised a legitimate sensor node and uses
the stolen key material, code and data in order to communicate with the rest
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of the nodes, as if it was an authorized node. With this kind of intrusion, an
attacker can launch more powerful and hard to detect attacks that can disrupt
or paralyze the network.

Securing sensor networks against these threats is a challenging research area,
necessary for commercially attractive deployments. Unfortunately, while sensor
networks were in their infancy, the main research focus was on making sen-
sor networks feasible and useful, and less emphasis was placed on security. A
number of new protocols have been designed for TinyOS [Hil00], which is an
operating system specially designed for wireless sensor networks. Most of these
protocols are built assuming a trusted environment and are very vulnerable
against security attacks. Addressing these vulnerabilities can become very com-
plex. Different applications employ different types of protocols, and different
protocols have different attacks and weaknesses that require different security
mechanisms. Therefore, our focus should not only be on how to secure sensor
networks, but also on how this can be done through generic and independent
solutions.

1.2 Problem Statement

The broadcast nature of the transmission medium in wireless sensor networks
makes information more vulnerable than in wired applications. Thus, security
mechanisms such as encryption and authentication are essential to protect in-
formation transfers. However, existing network security mechanisms are not
feasible in this domain, given the limited processing power, storage, bandwidth
and energy resources. Public-key algorithms, such as RSA are undesirable, as
they are computationally expensive. Instead, symmetric encryption/decryption
algorithms and hashing functions are between two to four orders of magnitude
faster [Car00], and constitute the basic tools for securing sensor networks com-
munications.

To develop security mechanisms and protocols for sensor networks, a neces-
sary requirement is key management, i.e., the establishment and maintenance
of shared keys between pairs of communicating nodes. However, bootstrapping
secure communications between sensor nodes, i.e., setting up secret keys among
them, can become a challenging task. If we knew which nodes would be in the
same neighborhood before deployment, keys could be decided a priori. Unfor-
tunately, most sensor network deployments are random, therefore such a priori
knowledge does not exist. There are also some other requirements that need to
be considered while designing a key management protocol. A desirable feature
is resistance to node capture. Even if a node is compromised and its key mater-
ial is revealed, an adversary should not be able to gain control of other parts of
the network by using this material. Therefore the compromise of nodes should
result in a breach of security that is constrained within a small, localized part
of the network.

Another problem that must be handled well by key management schemes is
that of simple message broadcast. Usually nodes establish pairwise keys with
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their one-hop neighbors, since in sensor network applications, nodes communi-
cate with their immediate neighbors. If a node shares a different key (or set of
keys) with each of its neighbors, then it will have to make multiple transmissions
of messages, encrypted each time with a different key, in order to broadcast a
message to all of its neighbors. In these cases, we believe that transmissions
must be kept as low as possible because of their high energy consumption rate.

Finally, a closely related problem to that of broadcasting encrypted messages
is the ability to perform aggregation and data fusion processing [Int03]. This
however can be done only if intermediate nodes have access to encrypted data to
(possibly) discard extraneous messages reported back to the base station. The
use of pair-wise shared keys effectively hinders data fusion processing.

It is easy to see that protecting the communication channel between two
nodes does not entirely guarantee the security of the sensor network. Different
communication paradigms must also be secured in order to withstand attacks
initiated by an adversary. For example, network programming protocols have
emerged recently for sensor networks that allow someone to disseminate a new
program image remotely, over the wireless link to the entire network, in a multi-
hop fashion, reprogramming the motes with new software. Currently these
protocols are not secured, allowing an attacker to disseminate malicious code
and reprogram the motes with her own code. Therefore, an authentication
scheme for network programming is needed to ensure that the program image
originates from the base station.

The most natural solution for authenticated network programming is asym-
metric cryptography, where messages are signed with a key known only to the
sender. Everybody can verify the authenticity of the messages by using the
corresponding public key, but no one can produce legitimate signed messages
without the secret key. However, public key schemes should be avoided in sensor
networks for multiple reasons: long signatures induce high communication over-
head per packet, verification time places a lower bound on the computational
abilities of the receiver, and so on, so forth. What makes the problem even
more challenging is that we do not deal with simple messages, but streams, i.e.,
sequences of packets. The size of program images that will be sent over the ra-
dio is usually between a few hundreds of kilobytes and a few thousands. So the
problem is to provide an efficient authentication mechanism for a finite stream
of data.

Encryption and authentication mechanisms provide reasonable defense for
mote-class outsider attacks. However, cryptography is inefficient in preventing
against laptop-class and insider attacks. It remains an open problem for addi-
tional research and development. The presence of insiders significantly lessens
the effectiveness of link layer security mechanisms. This is because an insider is
allowed to participate in the network and have complete access to any messages
routed through the network and is free to modify, suppress, or eavesdrop on the
contents.

There are several classical security methodologies so far that focus on trying
to prevent these intrusions. However, it is impossible, or even infeasible, to
guarantee perfect prevention. Not all types of attacks are known, and new ones
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appear constantly. As a result, attackers can always find security holes to exploit
in order to gain access in the sensor network. These intrusions will go unnoticed
and they will likely lead to failures in the normal operation of the network, as
Figure 1.1(a) suggests.

Attack
prevention

Attack e e TR EEEPEEPPRR PR E TP |
rrrrrrr O |
: Intrusion Failure

(a)
Attack R ]
rrrrrrr »O
! Intrusion Failure
o—ell-¥ |
: /" Vulnerability Intrusion
"""" > detection 1
(b)

Figure 1.1: Intrusion sequence. (a) Attackers may exploit a vulnerability and intrude
into the network, causing a failure. (b) Intrusion detection functions as a second line
of defence.

The last resort is intrusion detection, which can act as a second line of
defense: it can detect third party break-in attempts, even if this particular
attack has not been experienced before. If the intruder is detected soon enough,
one can take appropriate measures before any damage is done or any data is
compromised (Figure 1.1(b)). An effective intrusion detection system (IDS)
can also help us design better prevention mechanisms, by collecting information
about intrusion techniques and attack patterns.

The research of IDS in wireless sensor networks has not advanced signifi-
cantly. There are a few attempts that concentrate on specific attacks, but not a
generalized approach that can be both realistic and lightweight enough to run
on computationally and memory restricted devices such as the nodes of a sensor
network.

1.3 Contributions

Our contributions are the solutions we provide to each of the research problems
given in the previous section.
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1.3.1 Key Management

We first propose a distributed, deterministic key management protocol designed
to satisfy authentication and confidentiality, without the need of a key distribu-
tion center. The scheme is scalable since every node only needs to hold a small
number of keys independent of the network size, and it is resilient against node
capture and replication due to the fact that keys are localized; keys that appear
in some part of the network are not used again. Another important property
of the protocol is that it is optimized for message broadcast; each node shares
one pairwise key with all of its immediate neighbors, so only one transmission
is necessary to broadcast a message.

This protocol was later used to design novel techniques for secure in-network
processing (i.e., secure data aggregation) for sensor networks [DimO6b]. Data
aggregation is possible only if intermediate nodes have access to encrypted data
so that they can extract measurement values and apply to them aggregation
functions. Therefore, nodes that send data packets toward the base station must
encrypt them with keys available to the aggregating nodes, something that this
key management scheme provides. It was also used as a base to design new
frameworks for link-layer security, like L3Sec [Sor07; Kro08d], which provides
secure services to the higher levels such as confidentiality and authentication in
TinyOS.

1.3.2 Secure Network Programming

Next we propose Scatter, a secure code authentication scheme for efficient re-
programming sensor networks. This allows the sensor nodes to efficiently verify
that the new code originates from a trusted source, namely the base station.
With this security feature added, an attacker can not authenticate herself to
the network, and therefore the nodes will reject malicious updates. We followed
the approach of constructing a hash chain on the pages of the program image
and contribute a novel algorithm to sign the commitment of the chain. The
most appropriate method for this task was proved to be an r-times signature
scheme. However, there is not such a scheme appropriate for sensor networks.
Therefore, we propose a novel r-times signature scheme, which based on Merkle
trees manages to reduce the public key size considerably and make it suitable
for the sensor nodes.

In this way, Scatter avoids the use of Elliptic Key Cryptography and man-
ages to surpass all previous attempts for secure code dissemination in terms
of energy consumption and time efficiency. Besides the design and theoretical
analysis of the protocol, we also report the experimental evaluation of Scatter
in two different hardware platforms, namely Mica2 and MicaZ, which proves its
efficiency in practice.
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1.3.3 The Intrusion Detection Problem

Next we introduce the problem of intrusion detection in sensor networks. Based
on our experience exploring this problem space, we propose several general
guidelines for the design of intrusion detection systems in sensor networks.
Specifically, we propose a novel IDS architecture that relies on the coopera-
tion of the nodes. Our approach organizes the IDS agents according to the
distributed nature of the events involved in the attacks, and, as a result, an
agent needs to send information to other agents only when this information is
necessary to detect the attack. The coordination mechanism arranges the mes-
sage passing between the agents in such a way so that the distributed detection
is equivalent to having all events processed in a central place.

Note that distributed intrusion detection in wireless sensor networks is not
an easy task since the attacker can also participate in the protocol and try to
bring honest nodes to a wrong conclusion. So, first we identified necessary and
sufficient conditions on the behavior of the local modules such that they con-
tain enough information to cooperatively solve the intrusion detection problem.
These conditions also identify scenarios in which cooperative intrusion detec-
tion is unsolvable. These conditions are mainly related to the symmetry of
views between nodes and show that even the supposedly simple case of one ma-
licious node is surprisingly complex. However we investigated the probability
that these symmetry conditions occur in practice using simulations. Overall,
they showed that in randomly constructed networks our algorithm can reliably
detect the attacker with high probability.

1.3.4 An DS Architecture

In the proposed IDS, each node hosts an independent intrusion detection agent,
capable of detecting intrusions locally based on the data collected by itself and by
other neighboring nodes. There are no a priori trusted nodes, or any reputation
system. Instead, the system allows the arbitrary behavior of the nodes: a node
may behave normally with respect to routing in order to avoid being detected
by the IDS, but it can expose a malicious behavior to obstruct the successful
detection of another intruder node. The IDS system is based on the power of
the majority to protect itself from these misbehaving nodes.

The research of intrusion detection in wireless sensor networks has not ad-
vanced significantly so far. The implementation of our IDS is the first to appear
in the community. The experimental evaluation show that it is lightweight
enough to run on the nodes, requiring only limited computational and memory
resources. This proves that studying the problem of IDS in sensor networks is
a viable approach and with further research it can provide even more attractive
and efficient solutions for securing such networks.
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1.4 Thesis Outline

The rest of the dissertation is organized as follows. In Chapter 2, we review
the main research directions of sensor network security, we emphasize on the
way they are addressed by this thesis and we also outline the important open
questions in the area that we believe will draw the attention of the research
community in the future.

Chapter 3 presents a distributed, deterministic key management protocol
designed to satisfy authentication and confidentiality, without the need of a
key distribution center. We discuss how it can be used to secure information
propagated toward the base station, but also how to secure aggregation of this
information at intermediate nodes. Then we investigate the reverse direction
of disseminating information from the base station to the nodes. Finally, we
describe a mechanism for evicting compromised nodes as well as adding new
nodes. A security analysis is discussed and simulation experiments presented.

Chapter 4 addresses the problem of securing the dissemination of bulk data,
like code updates, from the base station to the nodes. We provide a protocol
that yields source authentication in the group setting like a public-key signature
scheme, only with signature and verification times much closer to those of a
MAC. We show how Deluge can be augmented with our solution to give a
secure and practical in-network programming system. Our implementation in
TinyOS allowed us to test the performance of this system on a real network of
motes and prove its efficiency.

Chapter 5 introduces the problem of intrusion detection in wireless sen-
sor networks. We review intrusion detection techniques and architectures from
wired and ad-hoc networks and identify which approaches are best for sensor
networks. Then we define the problem formally based on a generic system
model and we prove a necessary and sufficient condition for successful detection
of the attacker. We discuss simulation results showing the probability that this
condition does not hold and the probability of identifying the attacker.

Chapter 6 presents a lightweight intrusion detection system that is designed
for wireless sensor networks and is based on the theory of Chapter 5. The
protocol is based on a distributed architecture, in which nodes overhear their
neighboring nodes and collaborate with each other in order to successfully detect
an intrusion. We show the overhead imposed by the implementation of such a
protocol in TinyOS in terms of memory, communication and computation cost.

Finally, Chapter 7 summarizes the thesis and concludes with a prediction of
future technological trends.

1.5 Notation

Throughout the rest of this thesis we shall use the function names FE, V', h and
MAC respectively for encryption, verification, hash and message authentication
code, with optional subscript and superscript to indicate key and algorithm.
Table 1.1 captures the most important notations and explains their meanings.
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Table 1.1: Notations and their meanings.

Notation Meaning

m Message

o Signature

PK Public Key

H Hash function

h Hash value

F One-way function

mi||ma Concatenation of messages m; and mo

Eg v(m)  Encryption of message m, with key K
and the initialization vector IV,
which is used in counter mode (CTR)

MACk(m) MAC of message m using key K

For protocols, we shall adopt the classical notation whereby

A—B:m

indicates that principal A sends message m to principal B.



Chapter

Security in Sensor Networks

2.1 Introduction

The design of many sensor network applications or protocols for lower layers
assume that all nodes are cooperative and trustworthy. This is not the case
in most cases of real-world deployments, where the nodes are exposed to many
threats that can severely damage the proper network functionality. There are
many attacks designed to exploit the unreliable communication channels and
the unattended sensor nodes.

Most sensor networks actively monitor their surroundings, and it is often
easy to deduce information other than the data monitored. Such information
leakage often results in loss of privacy for the people in the environment. More-
over, the wireless communication employed by sensor networks facilitates eaves-
dropping and packet injection by an adversary. The combination of these factors
demands security for sensor networks to ensure operation safety, secrecy of sen-
sitive data and privacy for people in sensor environments.

Nevertheless, sensor networks cannot rely on human intervention to face
an adversary’s attempt to compromise the network or hinder its proper opera-
tion. Neither can they employ existing security mechanisms such as public key
infrastructures that are computationally expensive. Instead, an autonomic re-
sponse of the network that relies on the embedded pre-programmed policies and
a coordinated, cooperative behavior is the most effective way to gain maximum
advantage against adversaries.

In this chapter we give an overview of the security issues in sensor networks.
First we present the limitations of sensor networks that make security for such
networks hard, but also their unique characteristics that can be exploited to fa-
cilitate the security architect. Then, we formulate the threat model and discuss
the requirements that a security protocol has to meet. Following that, we take
a first step toward establishing a comprehensive set of security challenges for
sensor networks. This overview helps identify research challenges and sets the

9
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scene for the following chapters that present individual research contributions.

2.2 Obstacles to Sensor Network Security

Although wireless sensor networks have an ad-hoc nature, there are several
limitations that make security mechanisms proposed for ad-hoc networks not
applicable in this setting. In particular, security in sensor networks is compli-
cated by more constrained resources and the need for large-scale deployments.
A summary of these limitations follows below:

Table 2.1: Selection of currently available wireless sensor nodes.

Platform MCU RAM Program Radio Chip
Memory
BTnode3 ATMega 128 64 KB 128 KB  CC1000/Bluetooth
Cricket ATMega 128 4KB 128 KB CC100
Imote2 Intel PXA271 256 KB 32 MB CC2420
MICA2 ATMega 128 4KB 128 KB CC1000
MICAz ATMega 128 4KB 128 KB CC2420
Tmote Sky  TI MSP 430 10 KB 48 KB CC2420

Shimmer TI MSP 430 10 KB 48 KB  CC2420/Bluetooth

2.2.1 Constrained Hardware

A wide range of sensor node platforms has emerged over the past five years. So
far, for such devices, the trend has been to increase the lifetime of the nodes by
decreasing the resources such as memory, CPU, and radio bandwidth. There-
fore, motes have tiny resources, on the order of a few kilobytes of RAM and
a few megahertz of processor. For example, Table 2.1 indicates the resources
available by some popular mote platforms, like Mica2 developed by UC Berke-
ley in collaboration with the Crossbow corporation, or the BTnode family from
ETH Zurich [Beu03].

Establishing secure communication between sensor nodes becomes a chal-
lenging task, given these limited resources, as well as the lack of control of the
wireless communication medium. Public-key algorithms, such as RSA [Riv78]
or Diffie-Hellman key agreement [Dif76] are undesirable, as they are computa-
tionally expensive. Instead, symmetric encryption/decryption algorithms and
hash functions are between two to four orders of magnitude faster [Car00], and
constitute the basic tools for securing sensor network communications. How-
ever, symmetric key cryptography is not as versatile as public key cryptography,
which complicates the design of secure applications.
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2.2.2 Wireless Communication

Sensor nodes communicate through wireless communication, which is particu-
larly expensive from an energy point of view (one bit transmitted is equivalent to
about a thousand CPU operations [Hil00]). Hence one cannot use complicated
protocols that involve the exchange of a large number of messages. Addition-
ally, the nature of communication makes it particularly easy to eavesdrop, inject
malicious messages into the wireless network or even hinder communications en-
tirely using radio jamming.

2.2.3 Exposure to Physical Attacks

Unlike traditional networks, sensor nodes are often deployed in areas accessible
by an attacker, presenting the added risk of physical attacks that can expose
their cryptographic material or modify their underlying code. This problem is
magnified further by the fact that sensor nodes cannot be made tamper-resistant
due to increases in hardware cost. Therefore, sensor nodes are more likely to
suffers a physical attack in such an environment compared to typical PCs, which
are located in a secure place and mainly face attacks from a network.

2.24 Large Scale Deployment

Future sensor networks will have hundreds to thousands of nodes so it is clear
that scalability is a prerequisite for any attempt in securing sensor networks.
Security algorithms or protocols that were not designed with scalability in mind
offer little or no practical value to sensor network security.

2.2.5 Aggregation Processing

An effective technique to extend sensor network lifetime is to limit the amount
of data sent back to reporting nodes since this reduces communication overhead
[Int03]. However, this cannot be done unless intermediate sensor nodes have
access to the exchanged data to perform data fusion processing. End-to-end
confidentiality should therefore be avoided as it hinders aggregation by inter-
mediate nodes and complicates the design of energy-aware protocols.

2.3 New Opportunities

Even though the unique characteristics of sensor networks pose some new chal-
lenges in security, they also lead to some new opportunities for designing secure
protocols and open the door for an entirely new security paradigm. The same
properties that allow an attacker to intrude into a sensor network can be used
as defense mechanisms, if exploited properly. Below we outline some of these
characteristics from the security architect point of view.
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2.3.1 Broadcast Communication

As we saw in Section 2.2.2, an attacker can take advantage of the wireless
medium and broadcast communication of sensor nodes for intercepting or jam-
ming transmitted packets. In the same way, legitimate nodes can eavesdrop on
the traffic passing through their neighborhood. This can constitute a powerful
monitoring mechanism for suspicious or abnormal behaviors and lead to the
detection of an intruder node.

2.3.2 Massive Redundancy

Sensor nodes are typically low-cost devices allowing sensor networks to pose
large scale and massive redundancy. Due to these characteristics the loss or
corruption of a sensor node can either be mitigated by redundant sensors or
tolerated. Therefore, it is possible to device security protocols that tolerate
failures and work correctly even if up to ¢ out of n nodes are compromised by
the attacker. Also, in case that the network becomes aware of the intrusion, it
can restore its proper operation by using redundant information distributed in
other parts of the network.

2.3.3 Sensors as Routers

All sensor nodes act as routers of information toward the base station, in con-
trast to traditional networks which are based on specific traffic concentration
points. Therefore, in sensor networks traffic is distributed for load balancing
purposes and it is impossible for an attacker to monitor or control it at certain
points. This considerably increases the effort that she has to make, but it also
allows the network to reconfigure itself easily in case of node compromises, by
setting up alternative paths.

2.4 Threat Models

In sensor networks security, an attacker can perform a wide variety of attacks.
Not all of them have the same goal or motivations. So, in order to plan and
design better defense systems, we formulate a threat model that distinguishes
between two types of attacks: outsider attacks and insider attacks. We now
treat each one of these classes in turn.

2.4.1 Outsider Attacks

In an outsider attack (intruder node attack), the attacker node is not an autho-
rized participant of the sensor network. Authentication and encryption tech-
niques prevent such an attacker to gain any special access to the sensor network.
The intruder node can only be used to launch passive attacks, like the following:
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e Passive eavesdropping: The attacker eavesdrops (listens) and records (saves)
encrypted messages. The messages may then be analyzed in order to dis-
cover secret keys.

e Denial of service attacks: In its simplest form, an adversary attempts to
disrupt the network’s operation by broadcasting high-energy signals. In
this way, communication between legitimate nodes could be jammed, or
even worse, nodes can be energy depleted.

e Replay attacks: The attacker captures messages exchanged between legit-
imate nodes and replays them in order to change the aggregation results.

2.4.2 Insider Attacks

Perhaps more dangerous from a security point of view is an insider attack, where
an adversary by physically capturing a node and reading its memory, can obtain
its key material and forge node messages. Having access to legitimate keys, the
attacker can launch several kinds of attacks without easily being detected:

e False data injection (stealthy attack): the attacker injects false aggregation
results, which are significantly different from the true results determined
by the measured values

o Selective reporting: the attacker stalls the reports of events that do hap-
pen, by dropping legitimate packets that pass through the compromised
node.

Of course, an adversary cannot have unlimited capabilities. There is some
cost associated with capturing, reverse-engineering and controlling a node. There-
fore, we should assume that the adversary can compromise only a limited num-
ber of sensor nodes. This fact affects the design of security protocols, as it is
easier to offer some protection against a few compromised nodes, but not for
the case where a large portion of the network is in control of the attacker.

2.5 Routing Attacks against Sensor Networks

The goal of an attacker, either being insider or outsider, is to manipulate user
data directly or trying to affect the underlying routing topology. What makes
it even easier for her is the fact that most protocols for sensor networks are
not designed having security threats in mind. As a consequence, deployments
of sensor networks rarely include security protection and little or no effort is
usually required from the side of the attacker to perform the attack.

We mentioned some simple attacks in the previous section. However, there
are more sophisticated attacks that exploit specific characteristics of the routing
protocols in order effect the topology and gain access to the routed information.
These attacks are described analytically by Karlof and Wagner [Kar03].
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wormhole link

Figure 2.1: A wormhole attack between two points in the network.

2.5.1 The Sinkhole Attack

The sinkhole attack is a particularly severe attack that prevents the base station
from obtaining complete and correct sensing data, thus forming a serious threat
to higher-layer applications. In a sinkhole attack, a compromised node tries to
draw all or as much traffic as possible from a particular area, by making itself
look attractive to the surrounding nodes with respect to the routing metric.
As a result, the adversary manages to attract all traffic that is destined to the
base station. By taking part in the routing process, she can then launch more
severe attacks, like selective forwarding, modifying or even dropping the packets
coming through.

Recently we identified several vulnerabilities of two popular routing protocols
of sensor networks, namely the MintRoute and the MultiHopLQI, and showed
how they can be exploited by an attacker to launch a sinkhole attack [Kro08a].
It turns out that it is very easy for her to make the compromised node looks
attractive to its neighbors or make them look less attractive and eventually
make all nodes choose that node as their new parent.

2.5.2 The Wormhole Attack

The wormhole attack is a severe threat against packet routing in sensor networks
that is particularly challenging to detect and prevent. To launch such an attack,
an adversary establishes a low-latency link, referred as a wormhole link, between
two points of the network, as shown in the figure. Once the wormhole link is
operational, the adversary eavesdrops messages at one end and tunnels them
(possibly selectively) to the other end, where the packets are retransmitted.
The low-latency link used in this attack as well as any devices attached at each
end of the link belong only to the attacker and are not compromised resources of
the network. The link is realized in such a way that packets can travel from one
end to the other faster than they would normally do via a multi-hop route in
the network. The sensor nodes cannot detect the existence of such a link, as it
can be realized with other means, such as a wired connection or an out-of-band
wireless transmission.

As shown in the example of Figure 2.1, the net effect of the wormhole attack
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is that the nodes within region A think they are neighbors with the nodes
within region B and vice versa. If the attacker carefully chooses the place of
the wormhole’s end-points then it can use it to completely disrupt routing and
attract a significant amount of traffic. So, if one end of the wormhole is close
to the base station then nodes situated multiple hops away could be convinced
that they are only one or two hops away. As a result, these nodes will choose to
use the high-quality link for their transmission enabling other kind of attacks
such as the sinkhole attack.

2.5.3 The Sybil Attack

A Sybil attack is one in which an attacker uses a malicious device to create a
large number of pseudonymous entities, using them to gain a disproportionately
large influence. We refer to a malicious device’s additional identities as Sybil
nodes. Newsome et al. [New04] introduce a taxonomy of the different forms of
the Sybil attack in sensor networks. In terms of communication, Sybil nodes
can communicate directly or indirectly with legitimate nodes. In the latter
case, legitimate nodes are able to communicate with the Sybil nodes through
the malicious device, which claims to be able to reach the Sybil nodes. Moreover,
the malicious device can fabricate a new identity for a Sybil node, or it can steal
an identity from a legitimate node. Finally, in terms of time, the attacker may
try to have the Sybil identities participate in the network all at once or present
a large number of identities over a period of time, while only acting as a smaller
number of identities at any given time.

Sybil attack can be used against many protocols in sensor networks. In
multipath routing, seemingly disjoint paths could in fact go through a single
malicious node presenting several Sybil identities. If a geographic routing pro-
tocol is used [Dim06a], a Sybil node could appear in more than one place at
once, instead of having one set of coordinates. In-network processing is also
susceptible to Sybil attack. An attacker can affect aggregation results of sensor
readings by contributing to the operation many times. I n the same way, she
can affect a voting process amongst sensor nodes and make the system come to
wrong conclusions. Therefore, Sybil attacks can pose a significant threat to the
normal operation of a sensor network.

2.5.4 The HELLO Flood Attack

Many WSN protocols require nodes to broadcast HELLO packets for neighbor
discovery purposes. After just a few messages have been exchanged, most nodes
have a complete picture of their immediate vicinity and a routing topology log-
ically forms in a self-organizing fashion. However, if a laptop-class attacker
broadcasts such packets with large enough transmission power, she could con-
vince every node in the network that the adversary is its neighbor and advertise
attractive routing pathways through itself. After convincing portions of the net-
work that it is truly the best routing option, it might choose to ignore incoming
messages, effectively disabling large portions or even the entire network.
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Unlike the rest of attacks we described so far, the HELLO flood attack does
not require an attacking node to create legitimate traffic to be successful. So, for
example, even an outsider attacker can capture legitimate “HELLO” messages
as they breezed through the air and then forward them with a more powerful
antenna. Those messages would reach other nodes well beyond the actual reach
of a real sensor node’s hardware. It’s easy to see that this forwarding and
redistribution leads to false network topologies and bogus routing information.

2.6 Typical Security Requirements

Usually in sensor networks there exists one or more base stations operating as
data sinks and often as gateways to other networks. In general a base station
is considered trustworthy, either because it is physically protected or because it
has a tamper-resistant hardware. Concerning the rest of the network, we now
discuss the standard security requirements (and eventually behavior) we would
like to achieve by making the network secure [Sta02].

e Confidentiality: In order to protect sensed data and communication ex-
changes between sensor nodes it is important to guarantee the secrecy of
messages. In the sensor network case this is usually achieved by the use
of symmetric cryptography as asymmetric or public key cryptography in
general is considered too expensive. However, while encryption protects
against outside attacks, it does not protect against inside attacks/node
compromises, as an attacker can use recovered cryptographic key mate-
rial [Har05] to successfully eavesdrop, impersonate or participate in the
secret communications of the network. Furthermore, while confidentiality
guarantees the security of communications inside the network it does not
prevent the misuse of information reaching the base station. Hence, confi-
dentiality must also be coupled with the right control policies so that only
authorized users can have access to confidential information.

e Integrity and Authentication: Integrity and authentication is necessary
to enable sensor nodes to detect modified, injected, or replayed packets.
While it is clear that safety-critical applications require authentication, it
is still wise to use it even for the rest of applications since otherwise the
owner of the sensor network may get the wrong picture of the sensed world
thus making inappropriate decisions. However, authentication alone does
not solve the problem of node takeovers as compromised nodes can still au-
thenticate themselves to the network. Hence authentication mechanisms
should be “collective” and aim at securing the entire network.

o Awailability: In many sensor network deployments (monitoring fires, qual-
ity of water in reservoirs, protection against floods, battlefield surveillance,
etc.), keeping the network available for its intended use is essential. Thus,
attacks like denial-of-service (DoS) that aim at bringing down the network
itself may have serious consequences to the health and well being of people.
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However, the limited ability of individual sensor nodes to detect between
threats and benign failures makes ensuring network availability extremely
difficult. Additionally, it is important that the network still operates un-
der such scenarios and that its operation degrades in a predictable and
stable way despite the presence of node compromises or failures.

All this discussion suggests that it is necessary to develop networks that
exhibit autonomic security capabilities, i.e., be resilient to attacks and have the
ability to contain damage after an intrusion.

2.7 Issues in Sensor Network Security Research

A security architecture for sensor networks must integrate a number of security
measures and techniques in order to protect the network and satisfy the desirable
requirements we have outlined. In what follows we describe a comprehensive
set of these components (and the techniques involved) that are currently under
research in sensor networks. Some of these research issues are similar to those
faced in traditional networks, only with some additional constraints; others are
unique to sensor networks.

2.7.1 Key Establishment and Initial Trust Setup

One important component of sensor networks security is programmable and
controlled group communication. Members leave and join the group according
to some membership rules and follow the same behavior pattern within the
group. When setting up a secure sensor network, one must be able to embed
trust rules that govern the security level of group communications as well as the
self-configuration nature of the network. This includes discovering new nodes
and adding them in the group as well as identifying and isolating malicious
ones. Eventually this translates in establishing cryptographic keys between the
members of the group.

Key establishment protocols used in traditional networks are well studied
but cannot be applied here due to the inherent limited capabilities (CPU power,
memory, etc.) of sensor nodes. Moreover, key-establishment techniques need
to scale to networks with tens of thousands of nodes. Simple solutions such as
network-wide keys [Bas01] are not acceptable from a security point of view since
compromising a single node leads to compromise of the entire network, leaving
no margins for self-healing. On the other hand, having each node sharing a
separate key with every other node in the network is not possible due to memory
constraints.

Typically, the problem of initial trust setup can be solved by allocating to
each sensor node a randomly selected subset from a pre-established set of keys
[Esc02; Cha03b; Du03]. Then sensors can communicate securely if they have one
or more keys in common. However, these techniques offer only “probabilistic”
security as compromising a node may lead to security breaches in other parts
of the network.
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An alternative approach to pre-established keys is to have the nodes create
their keys after the deployment of the network, using preloaded information.
The keys are not randomly distributed, but rather they are localized; keys that
appear in some part of the network are not used again. So, even if a node is
compromised and its keys exposed, an adversary can have access only to a very
small portion of the network centered around the compromised node.

In order for sensor nodes to be able to communicate safely using established
cryptographic keys, a key refresh mechanism is also needed. In an autonomic
scenario, re-keying is equivalent with self-revocation of a key when the network
detects an intrusion or the lifetime of the key has expired. In order to keep the
desirable security level intact, the network itself has to determine that rekeying is
needed and initiate the appropriate mechanisms. Once the system has detected
the compromised area, the response is to cut off the intruder and exclude it
from any paths forcing the regeneration of new cryptographic keys between the
honest nodes.

2.7.2 Resilience to Denial of Service Attacks

Adversaries can limit the value of a wireless sensor network through DoS attacks
making it imperative to defend against them. DoS attacks can occur at multi-
ple protocol layers [Woo02], from radio jamming in physical layer to flooding in
transport layer, all with the same goal: to prevent the network from performing
its expected function. Adversaries can involve malicious transmissions into the
network to interfere with sensor network protocols and induce battery exhaus-
tion or physically destroy central network nodes. More disastrous attacks can
occur from inside the sensor network if attackers compromise some of the sensors
themselves. For example, they could create routing loops that will eventually
exhaust all nodes in the loop.

Determining that the network is subject to a DoS attack is a very challeng-
ing problem. Especially in large-scale deployments, it is hard to differentiate
between failures caused by intentional DoS attacks and nominal node failures.
An autonomic sensor network must be able to monitor the network traffic and
look for suspicious patterns that match some possibly learned rules about what
is normal or abnormal behavior [Ami08]. Then it can respond according to the
type of the attack.

Potential defenses include techniques such as frequency hopping, spread
spectrum communication [Pic82] and proper authentication. What is needed,
however, is an autonomic coordinated response to defend against DoS attacks
with a minimum latency between the detection and a coordinated response.
One example could be the use of unaffected nodes to map the affected region
and then route around the jammed portion of the network [Woo03b]. However,
the protocols involved must be highly efficient so that they do not themselves
become targets for energy depletion attacks.
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Figure 2.2: Connecting JTAG to Tmote Sky. With JTAG access, an adversary is
capable of taking complete control over the sensor node.

2.7.3 Resilience to Node Compromises

Due to the nature of their deployment, sensor nodes are exposed to physical
attacks in which an attacker can extract cryptographic secrets or modify their
code. Hartung et al. [Har05] demonstrate how to extract cryptographic keys
from a sensor node using a JTAG programmer interface in a matter of seconds
(see Figure 2.2). Also, Becher et al. [Bec06] evaluate different physical attacks
against sensor node hardware and determine the amount of effort an attacker
has to undertake to compromise a node. One defense against such attacks would
be the use of more expensive tamper resistance hardware; however, this solution
would increase the cost per sensor considerably, thus ruling out deployment of
sensor networks with thousands of nodes. Moreover, trusting tamper resistant
devices can be problematic [And96].

Recent advances in sensor networks research have shown that even with-
out physical access, an attacker can still manage to modify the code running
on the nodes, by exploiting memory-related vulnerabilities, e.g., buffer over-
flow [Goo07b; Goo07a]. This has been demonstrated for TinyOS 2.x on a Tmote
Sky wireless sensor node, which uses the Texas Instruments MSP430 microcon-
troller. The way to inject code into the node is to craft a packet which — when
copied over the stack — overwrites the return address with the address of the
global copy of itself.

For Atmel’s ATmegal28, which follows the Harvard architecture and pro-
gram memory is physically separated from data memory, it would be harder to
execute the malicious code. But still, Gu and Noorani [Gu08] in parallel with
Yang et al. [Yan08] demonstrated that it is possible to construct a worm which
uses existing code in the program memory to replicate itself and propagate to
other sensor nodes.

The use of Java on other platforms, like Sun SPOT or Sentilla’s Jcreate
node seems more secure as it provides built-in protections against code-based at-
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tacks that would exploit array boundaries, unchecked cast, pointer arithmetics,
etc. Also, the virtual machine checks incoming code compliance with the Java
standards before execution [Pla08]. A few schemes have been recently devel-
oped to provide memory safety in TinyOS, like Safe TinyOS [Coo07] and Har-
bor [Kum07], which both work on the source codes of applications. But an
attacker can find exploitable routines directly from assembly codes that are
not included in applications and hence, malicious packets may still evade these
schemes.

A prevention measure would be to use a diversified protection scheme, which
diversifies data and code segments by creating different and obfuscated data and
code segment for each node in the network [Ala06]. Therefore, the attackers’
effort on compromising one node cannot save their efforts on compromising
another node. This approach can also be used as a defensive mechanism against
worm attacks [Yan08]. Combined with the fact that an adversary would have
to capture a large percentage of the sensors in the same time interval, security
of the network would be enforced.

On the other hand, a detection measure would be a mechanism that could
effectively detect malicious code in sensor nodes and give an assurance that
they are running the correct code. This is called software-based code attesta-
tion [Ses06; Par05; Sha05; Ses04]. For example, SWATT [Ses04] enables an
external verifier to verify the code of a running system to detect maliciously
inserted or altered code, without the use of any special hardware. This enables
new intrusion-detection architectures, where other sensor nodes can play the
role of the verifier and alert the rest of the network in case a compromised node
is detected. This approach has been followed by a scheme proposed by Yang et
al. [Yan07], which does not depend on response time measurement by mobile
verifiers as in SWATT. Instead, neighbors of a suspicious node collaborate in
the attestation process to make a joint decision.

The problem with the above approach is how the nodes can identify suspi-
cious nodes, before they initiate any code attestation process. A relatively un-
explored research area in sensor networks security is intrusion detection, which
monitors the behavior of the nodes with respect to the network traffic and iden-
tifies suspicious nodes. The challenge is to turn this uncertainty into successful
identification with high probability, if the nodes collaborate and exchange their
views on the suspicious node, eliminating the need for more complex protocols,
like software-based code attestation.

2.7.4 Routing Security

Packet routing is one of the most essential services in sensor networks, as it is
used to exchange messages with sensor nodes that are outside of a particular
radio range. Researchers have proposed several approaches for efficient routing,
but rarely do they consider security as a central design parameter [Par06]. Usu-
ally a trusted environment is assumed, where all sensor nodes cooperate and
no attacker is present. Securing such protocols is very important, since even a
single compromised node could completely paralyze communication in the net-
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work. For example, an attacker could inject malicious routing information into
the network that results in routing inconsistencies. Protecting communication
by authenticating the packets could defend against such attacks, but not against
replaying legitimate packets, or other approaches that an attacker may take. An
excellent discussion on many of the attacks on routing protocols is presented by
Karlof and Wagner [Kar03].

Initially, research on secure routing in sensor networks focused on providing
intrusion-tolerant security, which seeks to maintain a certain level of availability
even in the face of attacks. For example, multipath routing [Gan01; Den04] has
been proposed as such a solution. Redundant disjoint paths are used, so even
if an intruder compromises a node, information can be routed by alternative
paths. An alternative direction is the prevention approach, which seeks to
harden the routing protocol against attacks by restricting participants’ actions.
This approach can be efficient and effective, but only for one specific attack at a
time, and only for already known attacks. For example, it has been shown how
a sensor network can defend against a HELLO flood attack [HamO06], a Sybil
attack [New04; Zha05], wormhole attack [Zha05] or a DoS attack [Aga06].

The third and most recent direction for designing secure routing protocols is
detection, where the nodes monitor the real-time behavior of their neighbors in
order to detect malicious behavior. Then recovery and self-healing techniques
can be used to eliminate malicious participants and to restore network func-
tionality. Ideally, intrusion detection systems (IDSs) can detect both known
security exploits and even novel attacks that are yet to be experienced.

2.7.5 Location Aware Security

Many applications of sensor networks require location information, not only for
routing purposes, but also for determining the origin of the sensed information or
preventing threats against services [Liu03; Laz03]. Many localization techniques
have been proposed, but little research has been done in securing the localization
scheme [Sas03; Laz05; C06; Du06]. Security in this case is twofold: Each node
must determine its own location in a secure way (secure localization) and each
node must verify the location claim of another node (location verification).

Since providing each node with a GPS receiver increases its cost, many local-
ization services assume the presence of a few such nodes (usually more powerful
also), which communicate their coordinates in the network and allow the rest
of the nodes to estimate their position. This communication provides malicious
attackers with the chance to modify measured distances and make nodes believe
that they are at a position which is different from their real one. Furthermore,
without location verification mechanisms, a dishonest node can cheat about its
own position in order to gain unauthorized access to some services, or avoid
being penalized. As more and more protocols and services are based upon lo-
cation awareness, enabling sensors to determine their location in an untrusted
environment becomes essential.
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Figure 2.3: A tracking application using both (a) aggregation and (b) dissemination.

2.7.6 Secure Aggregation and Dissemination

Since sensor nodes have limited energy which may be exhausted, sensor net-
works are densely deployed to deal with connectivity and coverage problems.
This causes neighboring nodes to have overlapping sensing regions and gener-
ate correlated measurements whenever an event occurs in this overlap. More-
over, sensor nodes are usually deployed randomly, which reinforces the effect of
overlapping regions. Each node observes its sensing region independent of its
neighbors and sends its measurements to the base station. Therefore, commu-
nication overhead can be substantially reduced, if raw data sent by nodes can
be combined to eliminate redundancy and reduce the number of transmissions.

A technique that has been used to deal with these problems is data aggrega-
tion (or data fusion) [Int03; Kri02; Mad02]. The key idea is to combine highly
correlated data coming from different sensors into one packet. This happens
at intermediate nodes, called aggregators, which compute an aggregated value
of all the measurements (e.g., an average or maximum temperature), and then
forward only a single packet with the resulted value. The reverse process is
called data dissemination, in which the network hierarchy is used in the reverse
direction in order to disseminate control messages from the base station toward
the aggregators and eventually toward the sensor nodes. For example, as shown
in Figure 2.3, in tracking applications the sensor network may need to be used in
both modes: first to aggregate sensed data about the movement of the tracked
object and then to disseminate commands to nearby sensors to enable further
tracking [Xu03].

In wireless sensor networks, the first step on providing security for data
communication is the establishment of shared keys between pairs of nodes so
that they can encrypt and authenticate data exchanged between them. However,
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caution must be taken so that in-network processing is not hindered by the
underlying security protocol. It is well-known that end-to-end data encryption
is able to protect private communications between two parties, but it is not
a good candidate for private data aggregation. This is because, if end-to-end
communications are encrypted, the intermediate nodes cannot easily perform
in-network processing to get aggregated results.

In particular, the following requirements must be supported by the key
management scheme, in order to facilitate data aggregation and dissemination
process:

1. Data aggregation is possible only if intermediate nodes have access to
encrypted data so that they can extract measurement values and apply
to them aggregation functions. Therefore, nodes that send data packets
toward the base station must encrypt them with keys available to the
aggregator nodes.

2. Data dissemination implies broadcasting of a message from the aggregator
to its group members. If an aggregator shares a different key (or set of
keys) with each of the sensor within its group, then it will have to make
multiple transmissions, encrypted each time with a different key, in order
to broadcast a message to all of the nodes. But transmissions must be
kept as low as possible because of their high energy consumption rate.

One way to satisfy the above requirements is by grouping nodes into clusters,
where a common key is shared between the nodes of the same cluster. Data are
encrypted using that key, so aggregation and dissemination within the cluster
is very efficient.

Here we assume, as in other existing secure data aggregation schemes [Prz03;
Yan06; Bla06], that an intermediate aggregation node has to decrypt the re-
ceived data, then aggregate the data according to the corresponding aggrega-
tion function, and finally encrypt the aggregated result before forwarding it.
An alternative approach exists, where aggregation of encrypted data is possible
without decryption in the aggregation nodes. This can be done by using homo-
morphic encryption ciphers, as proposed by Girao et al. [Wes06] and Castelluccia
et al. [Cas05].

2.7.7 Link-layer Security

What makes link-layer security important is that end-to-end security mecha-
nisms are not possible in sensor networks, so more transparent mechanisms
provided by the link layer are needed. Protocols used in conventional networks
for end-to-end security, such as SSH [Y1096], SSL [ssl01], or IPSec [Ken98§],
even though they are feasible in constrained embedded devices [Gup05], they
are considered inappropriate since they do not allow in-network processing and
data aggregation which play an important role in energy-efficient data retrieval.
These operations require the intermediate nodes to access and possibly modify
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the contents of packets, which would not be possible if an end-to-end security
scheme was used.

In sensor networks it is also important to allow intermediate nodes to check
message integrity and authenticity, or else the network would be prone to several
denial of service attacks. Using an end-to-end security mechanism, packets
would have to be routed all the way to the base station before these checks
could be performed, since the intermediate nodes do not have the keys to verify
their authenticity and integrity. On the other hand, using a transparent security
mechanism at the link layer, malicious packets can be identified and rejected at
the first hop.

However, since the usual traffic pattern in WSN is many-to-one, pre-loading
one-to-one keys between two sensors and refreshing the keys are practically im-
possible tasks. Public key cryptography is also considered to be computationally
expensive for WSN and therefore, light-weight, yet reasonably secure key man-
agement schemes are crucial in order to bring about acceptable security services
in WSN. In addition to this, any WSN security protocol has to be flexible and
scalable enough to easily allow nodes to join or leave the network.

TinySec [Kar04] is a link-layer security architecture for wireless sensor net-
works that is part of the official TinyOS release. It generates secure packets
by encrypting data packets using a group key shared among sensor nodes and
calculating a MAC for the whole packet including the header.

A limitation of TinySec is that messages of less than 8 bytes are not addressed
efficiently. This is because TinySec uses a k-byte block cipher to encrypt the
message. For longer messages CBC mode is chosen that encrypts the message
block by block. But it is not so unusual for a message (i.e., the payload of
the TinyOS packet) to be less than 8 bytes, in which case TinySec will cause a
ciphertext expansion, because ciphertext stealing requires at least one block of
ciphertext. This kind of ciphertext expansion would cause extra communication
power cost when sending data with variable length.

TinySec by default relies on a single key manually programmed into the
sensor nodes before deployment. This network-wide shared key provides only
a baseline level of security. It cannot protect against node capture attacks. If
an adversary compromises a single node or learns the secret key, she can gain
access on the information anywhere in the network, as well as inject her own
packets. This is probably the weakest point in TinySec, since, as we saw in
Section 2.7.3, node capture has been proved to be a fairly easy process.

More recent link-layer security protocols have used stronger keying mech-
anisms to deal with node capture attacks and provide better services to the
upper layers [Kro08d]. Examples of such protocols include SenSec [Li05], Se-
cureSense [Xue03], SNEP [Per02], MiniSec [Luk07] and L3Sec [Sor07]. Some
important features that these protocols exhibit include the resilience to node
capture attack and scalability, both of which require that the framework is tied
to an appropriate key management protocol. Another important feature is flex-
ibility, which allows different types of security services for different types of
communications among nodes.
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2.7.8 Secure Network Programming

The process of programming sensor nodes typically involves the development
of the application in a PC and the loading of the program image to the node
through the parallel or the serial port. The same process is repeated for all
the nodes of the sensor network before deployment. However, after deployment,
there is often the need to change the behavior of the nodes in order to adapt
to new application requirements or new environmental conditions. This would
require the effort of re-programming each individual node with the updated code
and relocate it back to the deployment site. Network programming saves this
effort by propagating the new code over the wireless link to the entire network, as
soon as that code is loaded to only one node. Then, nodes reprogram themselves
and start operating with the updated code.

As network programming simplifies things for legitimate users, it also sim-
plifies things for attackers that want to disrupt the normal operation of the
network or operate them for their own advantage. In currently deployed net-
works the nodes do not authenticate the source of the program; therefore an
attacker could easily approach the deployment site and disseminate her own
malicious/corrupted code in the network.

This possibility makes sensor networks deployments susceptible to outsider
attacks. Besides loosing control of the network or getting back altered measure-
ments, it is even possible that the network is reprogrammed with malicious code
that has the same functionality with the legitimate code but also reports data to
the adversary. In such a case legitimate users would never know that something
is wrong. Hence, it is important that the sensor nodes can efficiently verify that
the new code originates from a trusted source, namely the base station.

The most natural solution for authenticated broadcasts is asymmetric cryp-
tography, where messages are signed with a key known only to the sender.
Everybody can verify the authenticity of the messages by using the correspond-
ing public key, but no one can produce legitimate signed messages without the
secret key. However, public key schemes should be avoided in sensor networks
for multiple reasons: long signatures induce high communication overhead of 50
- 1000 bytes per packet, verification time places a lower bound on the compu-
tational abilities of the receiver, and so on.

However our goal is not to authenticate just messages, since here we are
dealing with streams, rather than simple messages. The size of program images
that will be sent over the radio is usually between a few hundreds of kilobytes
and a few thousands. This fact can allow the use of public key schemes if we
manage to reduce the size of the public key and also make signature size to be
only a small percentage of the total transmitted stream. Furthermore, if we
reduce the verification time down to the order of that of a symmetric scheme,
we will have proved that public key cryptography is an attractive solution for
such problems.
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2.7.9 Efficient Cryptographic Primitives

Because sensor nodes have limited computational and storage capabilities, tra-
ditional security solutions are often too expensive for sensor networks. More
research in this domain is necessary, especially in exploring the use of efficient
asymmetric cryptographic mechanisms for key establishment and digital signa-
tures as a means for leveraging trust in sensor networks and solving some of the
problems mentioned above [Gau04; Lop06].

Recently, elliptic curve cryptography (ECC) has emerged as a promising
alternative to RSA-based algorithms, as the typical size of ECC keys is much
shorter for the same level of security. There have been notable advances in ECC
implementation for WSNs in recent years. Uhsadel et al. [Uhs07] propose an
efficient implementation of ECC and Liu et al. [Liu08a] developed TinyECC,
an ECC library that provides elliptic curve arithmetic over prime fields and
uses inline assembly code to speed up critical operations on the ATmegal28
processor. Also lately, Szczechowiak et al. [Szc08] presented NanoECC, which
is relatively fast compared with other existing ECC implementations, although
it requires a heavy amount of ROM and RAM sizes.

Even though elliptic curve cryptography is feasible on sensor nodes, its en-
ergy requirements are still orders of magnitude higher compared to that of
symmetric cryptosystems. Therefore, elliptic curve cryptography would make
more sense to be used only for infrequent but security-critical operations, like
key establishment during the initial configuration of the sensor network [Gro06].

Elliptic curve cryptography can also be used as a solution for secure code dis-
semination protocols in sensor networks, since this problem calls for asymmetric
cryptography. When a new code is received by a node, the code should be au-
thenticated by verifying its signature. Since this operation is performed at the
mote, both energy efficiency (i.e., verification time) and code size are important
parameters. Some proposed protocols, like Sluice [Lan06] and Seluge [Liu08b],
use ECC for signature verification of the program images. However, this prob-
lem can be solved more efficiently with signing and verification times much closer
to those of a MAC, eliminating the need for ECC.

2.8 Conclusions

In this chapter we have presented an overview of current research challenges
on sensor networks security. A progress has been made in providing specialized
security mechanisms, like key establishment, secure localization, secure aggrega-
tion or secure routing. Some of these mechanism are addressed by our research
and presented in the following chapters.

According to what discussed in Sections 2.7.1 and 2.7.6, a localized distrib-
uted algorithm for key establishment in sensor networks that works well with
data aggregation and dissemination is presented in Chapter 3. A scheme is
proposed that utilizes the established keys in order to provide secure commu-
nication between a source node and the base station, while intermediate nodes
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can access data and perform aggregation.

The challenges presented in Section 2.7.7 are addressed by Chapter 4, where
we provide an efficient authentication scheme for a finite stream of data. This
scheme is based on symmetric cryptography primitives while at the same time
having the properties of asymmetric cryptography, eliminating the need for
ECC, as we mentioned in Section 2.7.9. As we will see, such a scheme can
make authenticating code updates (and data streams in general) very efficient
for sensor networks.

While addressing the challenges presented in this chapter may protect sensor
networks from specific threats, what has been lacking is a holistic approach that
encompasses autonomic responses over a broad range of attacks. A research
challenge therefore, would be the design of an adaptive security architecture that
can monitor the sensor network, recognize a security threat and respond by a
coordinated self-healing mechanism. Chapters 5 and 6 investigates this approach
and describes an intrusion detection system that can offer opportunities for
increasing sensor networks security and guaranteeing a robust and survivable
solution.






Chapter

Key Management

3.1 Introduction

The first step toward protecting sensor data communications is the establish-
ment of encryption keys among sensors so that they can set up secure com-
munication links [C07]. As indicated by Hu et al. [HuO05], setting up pairwise
keys for secure communications is necessary to secure routing in wireless ad
hoc networks. However, given the limited processing power, storage, bandwidth
and energy resources, it is widely considered that a sensor device cannot employ
sophisticated cryptographic technologies such as public key cryptosystems. In-
stead, symmetric encryption/decryption algorithms and hashing functions are
between two to four orders of magnitude faster [Car00; Cha03al, and constitute
the basic tools for securing sensor networks communication.

Setting up pairwise symmetric keys among communicating sensors is an im-
portant step for bootstrapping [C07; Esc02] the mutual trust required for data
exchange. However, caution must be taken so that network operations, e.g.,
in-network processing, are not hindered by the underlying security protocol. In
particular, the following requirements must be supported by the key manage-
ment scheme:

1. Data aggregation is possible only if intermediate nodes have access to
encrypted data so that they can extract measurement values and apply
to them aggregation functions. Therefore, nodes that send data packets
toward the base station must encrypt them with keys available to the
aggregator nodes.

2. Data dissemination implies broadcasting of a message from the aggregator
to its group members. If an aggregator shares a different key (or set of
keys) with each of the sensor within its group, then it will have to make
multiple transmissions, encrypted each time with a different key, in order

29
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to broadcast a message to all of the nodes. But transmissions must be
kept as low as possible because of their high energy consumption rate.

So, the use of pair-wise shared keys between the nodes and the base sta-
tion effectively hinders in-network processing. A solution that could satisfy the
above requirement could be the use of a key common to all sensor nodes in
the network [Bas01]. The problem with this approach is that if a single node
is compromised then the security of the whole network is disrupted. Further-
more, refreshing the key becomes too expensive due to communication overhead.
Therefore, we need a more sophisticates key management protocol that satis-
fies the above requirements, while it offers resiliency against node capture and
replication.

In this chapter we present such a key management protocol for sensor net-
works. This protocol is composed by four phases. The first is the key distri-
bution phase, where secret keys are pre-distributed to sensor nodes a priori to
the deployment. In the second phase, sensor nodes discover their neighbors and
establish common keys with them. This is achieved by using the pre-distributed
keys and by exchanging messages directly over their insecure wireless links. In
the third phase, each pair of neighboring nodes that do not have common keys,
establish one or more keys. The fourth phase is the key update phase which sup-
ports the deployment of new sensor nodes and the update of the corresponding
secret keys. The proposed scheme utilizes the established keys in order to pro-
vide secure communication between a source node and the base station, while
intermediate nodes can access data and perform aggregation and dissemination.

In this way we ensure that communication is protected from external parties.
In case of an insider attack, where a node is compromised, its secret keys are
revealed. Even in this case, our protocol does not allow an adversary to gain
control of other parts of the network by using this material. Therefore the
compromise of nodes does not result in a breach of security and constrains the
damage within a small, localized part of the network. With a proper intrusion
detection system, like the one we propose in Chapter 6, the compromised area
can be identified and the corresponding keys can be revoked.

3.1.1 Related Work

We have already mentioned Basagni et al.’s pebblenets architecture [Bas01] that
uses a global key shared by all nodes. Having network wide keys for encrypting
information is very good in terms of storage requirements and energy efficiency
as no communication is required among nodes to establish additional keys. It
suffers, however, from the obvious security disadvantage that compromise of
even a single node will reveal the universal key. Since one cannot have keys that
are shared pair-wise between all nodes in the network, a key pre-distribution
scheme must be used.

Random key pre-distribution schemes [Esc02; Cha03b; Liu05; Du03] offer a
trade-off between the level of security achieved using shared keys among nodes
and the memory storage required to keep at each node a set of symmetric
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keys that have been randomly chosen from a key pool. Then, according to the
model used, nodes use one or more of these keys to communicate securely with
each other. A necessary requirement of a good key-distribution scheme is that
compromise of nodes should not result in a breach of security that is spread in
the whole network. Our approach guarantees this since it’s not a probabilistic
scheme; compromised nodes cannot expose keys in another part of the network.
In our work, however, we emphasize on another desirable characteristic: when
a node wants to broadcast a message to a subset or all of its neighbors it should
not have to make multiple transmissions of the same message, encrypted each
time with a different key. We now review some other proposals that use security
architectures similar to ours.

In LEAP [Zhu03] every node creates a cluster key that distributes to its
immediate neighbors using pair-wise keys that shares with each one of them.
In this case, however, clusters highly overlap so every node has to apply a
different cryptographic key before forwarding the message. While this scheme
offers deterministic security and broadcast of encrypted messages, it has a more
expensive bootstrapping phase and increased storage requirements as each node
must set up and store a number of pair-wise and cluster keys that is proportional
to its actual neighbors.

Slijepcevic et al. [Sli02] propose dividing the network into hexagonal cells,
each having a unique key shared between its members. Nodes belonging to the
bordering region between neighboring cells store the keys of those cells, so that
traffic can pass through. The model works under the assumption that sensor
nodes are able to discover their exact location, so that they can organize into
cells and produce a location-based key. Moreover, the authors assume that
sensor nodes are tamper resistant, otherwise the set of master keys and the
pseudo-random generator, pre-loaded to all sensor nodes, can be revealed by
compromising a single node and the whole network security collapses. Those
assumptions are usually too demanding for sensor networks.

3.1.2 Chapter Contribution

In this work we present a security protocol that has the following properties:

o Resilience to Node Capture. Our scheme offers deterministic security as
a single compromised node disrupts only a local portion of the network
while the rest remains fully secured. We designed our protocol without
the assumption of tamper resistance. Once an adversary captures a node,
key materials can be revealed.

e Resistance to Node Replication. Even if a node is compromised and be
used to populate the network with its clones, an adversary cannot gain
control of the network as key material from one part of the network cannot
be used to disrupt communications to some other part of it.

o FEnergy efficiency. We enable secure communication between a node and
its neighbors by requiring only one transmission per message. Thus mes-
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sages do not have to be encrypted multiple times with different keys to
reach all neighbors. This saves energy as transmissions are among the
most expensive operations a sensor can perform [Per02].

o Intermediate Node Accessibility of Data. An effective technique to ex-
tend sensor network lifetime is to limit the amount of data sent back to
reporting nodes since this reduces communications energy consumption.
This can be achieved by some processing of the raw data to discard extra-
neous reports. However, this cannot be done unless intermediate sensor
nodes have access to the protected data to perform data fusion processing.
Although existing random key pre-distribution schemes provide a secure
path between a source and a destination, nearby nodes cannot have access
to this information as it is highly unlikely they possess the right key to
decrypt data.

e Scalability. The number of keys stored in sensor nodes is independent from
the network size and the security level remains unaffected.

e Fasy Deployment. Our protocol enables a newly deployed network to
establish a secure infrastructure quickly using only local information and
total absence of coordination.

3.1.3 Chapter Outline

The organization of the rest of the chapter is as follows: In Section 3.2, we
describe our security protocol. We break this discussion into multiple subsec-
tions to ease the readability and understanding of the protocol. Furthermore,
we prove each of the claims we made in this introduction about the features of
our protocol. In Section 3.2.4, we describe how new node addition can be sup-
ported and in Sections 3.3 and 3.4, we show how this protocol can be extended
to secure the communication between nodes and their aggregators. In Section
3.5, we provide experimental evidence about the scalability of our protocol (in
terms of the keys stored in each node) as well as the local resiliency (in terms
of nodes in each cluster). In Section 3.6 we show that our protocol is secure
against certain types of attacks. Finally we summarize our results in Section
3.7.

3.2 Security Protocol

In this section we first describe a localized algorithm for key management in
wireless sensor networks (Sections 3.2.1 and 3.2.2) and then provide a scheme
that utilizes the established keys in order to provide secure communication be-
tween a source node and the base station (Section 3.2.3). In general, our scheme
can provide secure communication between any pair of nodes by building tran-
sitive keying relationships, but we demonstrate our protocol with respect to the
“node to base station” data delivery model, since this is the most commonly
used in sensor networks. The protocol is divided into the following phases:
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1. Initialization phase that is performed before sensor nodes are deployed.

2. Cluster key setup phase that splits the network into disjoint sets (clusters)
and distributes a unique key to each cluster. That key is shared between
all the cluster members, as well as the nodes that are one-hop away from
the cluster.

3. Secure communication phase that provides confidentiality, data authenti-
cation, and freshness for messages relayed between nodes toward the base
station.

3.2.1 Initialization

Sensor nodes are assigned a unique ID that identifies them in the network, as
well as three symmetric keys. Since wireless transmission of this information is
not secure, it is assigned to the nodes during the manufacturing phase, before
deployment. In particular the following keys are loaded into sensor nodes:

- K;: Shared between each node ¢ and the base station. This key will be
used to secure information sent from node i to the base station. It is not
used in establishing the security infrastructure of the network but only to
encrypt the sensed data D that must reach the base station in a secure
manner. If we are interested in data fusion processing this key should not
be used to encrypt D as otherwise intermediate nodes will not be able to
evaluate and possibly discard the data.

- K!: Shared between each node i and the base station. This key will be
used only by those nodes that will become clusterheads and it will be the
cluster key. These are the keys used to forward information to the base
station in a hop-by-hop manner.

- K;: A master key shared among all nodes, including the base station.
This key will be used to secure information exchanged during the cluster
key setup phase. Then it is erased from the memory of the sensor nodes.

The base station is then given all the ID numbers and keys used in the
network before the deployment phase. Since the base station stores information
used to secure the entire network, it is necessary to include it in our trusted
computing base.

3.2.2 Cluster Key Setup

We now describe how sensor nodes use the pre-deployed key material in order
to form a network where nodes can communicate with each other using a set of
trusted keys.

The cluster key setup procedure is divided into two phases: organization
into clusters and secure link establishment. During the first phase the sensor
nodes are organized into clusters and agree on a common cluster key, while in
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the second phase, secure links are established between clusters in order to form
a connected graph.

An implicit assumption here is that the time required for the underlying
communication graph to become connected (through the establishment of secure
links) is smaller than the time needed by an adversary to compromise a sensor
node during deployment. As security protocols for sensor networks should not
be designed with the assumption of tamper resistance [And96], we must assume
that an adversary needs more time to compromise a node and discover the
master key K,,,. In the experimental section we give evidence that this is indeed
the case.

Organization into clusters

In this phase, the creation of clusters happens in a probabilistic way that re-
quires the nodes to make at most one broadcast. Each node ¢ waits a random
time (according to an exponential distribution) before broadcasting a HELLO
message to its neighbors declaring its decision to become a cluster head. This
message is encrypted using K,, and contains the ID; of the node, its key K
and an authentication tag:

B, (IDi[| K| MACy,, (ID;]| K¢))

Upon receiving a HELLO message, a node decrypts and authenticates the
message. Then it reacts in the following way:

1. If the node has not made any decision about its role yet, it joins the cluster
of the node that sent the message and cancels its timer. No transmission
is required for that node. The key that it is going to be using to secure
traffic is K. = K.

2. If the node has already decided its role, it rejects the message. This will
happen if the node has already received a HELLO message from another
node and became a cluster member of the corresponding cluster, or the
node has sent a HELLO message being a cluster head itself.

Upon termination of the first phase, the network will have been divided into
clusters. All nodes will be either cluster heads or cluster members, depending
on whether they sent a HELLO message or received one. We are assuming here
that collisions are resolved at a lower level otherwise acknowledgments must
be incorporated in this simple protocol. There is, however, the possibility that
two neighboring nodes send HELLO before they receive the same message from
their neighbor, thus becoming clusterheads of themselves. Furthermore, there
is a case for a node to send a HELLO message after all its neighboring nodes
have decided their role, and thus become a head of a cluster with no members.
Although these possibilities can be minimized by the right exponential distri-
bution of the time delays that nodes send the HELLO messages, they do not
affect the proper running of the protocol. In Figure 3.1 we show the distribu-
tion of nodes to clusters for densities (average number of neighbors per sensor)



3.2 SECURITY PROTOCOL 35

0.4

Percentage of clusters

5 6 7 8

Number of nodes

Figure 3.1: Distribution of nodes to clusters.

equal to 8 and 20. As it can be seen in the figure, for smaller densities a larger
percentage of nodes forms clusters of size one. However, the probability of this
event decreases as the density becomes larger.

At the end of this phase each cluster will be given an identifier CID, which
can be the cluster head’s ID. All nodes in a cluster will be sharing the same key,
K., which is the key K! of the cluster head. From this point on, cluster heads
turn to normal members, as there is no more need for a hierarchical structure.
This is important since cluster based approaches usually create single points of
failure as communications must usually pass through a clusterhead. Figure 3.2
shows an example topology where three clusters have been created with CIDs
13, 9 and 19.

As it can be seen from Figure 3.2, the maximum distance between two nodes
in a cluster is two hops. Since all nodes in a cluster share a common key K., we
need to keep the size of the clusters as small as possible in order to minimize the
damage done by the compromise of a single node. In the experimental section,
we give evidence that indeed clusters contain in average a small number of nodes
that is independent of the size of the network.

Secure link establishment

In the second phase, all nodes get informed about the keys of their neighboring
clusters. We need this phase in order to make the whole network connected since
up to this point it is only divided into clusters whose nodes share a common
key. We say that a node is neighbor of a cluster CID when that node has within
its communication range at least one member of that cluster. This phase is
executed with a simple local broadcast of the cluster key by all nodes. The
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Figure 3.2: An example topology after organization into clusters

message sent contains the tag and the CID, encrypted using K,,:
Ek,, (CID;|| K[| MACk,, ((CIDi||Kc))

Nodes of the same cluster simply ignore the message, while any nodes from
neighboring clusters will store the tuple (CID, K.) and use it to decrypt traffic
coming from that cluster, as explained in the next section. If the message has
been sent from a member of the same cluster, then that message should be
ignored.

We must emphasize again that the total time of both steps is too short for
an adversary to capture a node and retrieve the key K, (see also Figure 3.10
in Section 3.5 for a justification of this claim.) Nevertheless an adversary could
have monitored the key setup phase and by capturing a node at later time it
could retrieve all cluster keys. Therefore after the completion of the key setup
phase, all nodes erase key K,, from their memory.

At this point, each node i of the sensor network will have its key K; and a set
S of cluster keys that includes its own cluster key and the keys of its neighboring
clusters. The total number of the keys that a node will have to store depends on
the number of its neighboring clusters, thus not all cluster members store the
same number of keys. (In the experimental section we give evidence that each
node needs to store on average a handful of cluster keys). Most importantly
however, the number of keys that each node gets is independent of the network
size and therefore there is no upper limit on the number of sensor nodes that
can be deployed in the network.

We illustrate the operations of the cluster key setup phase with the following
example. Consider the sensor network depicted in Figure 3.3. Three clusters
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Figure 3.3: An example topology during the key setup phase.

with CIDs 13, 9 and 19 have been formed from the first step. The figure also
shows the transmission radius of nodes 25, 17 and 5. As it can be seen, node 25
has two neighboring clusters, since node 17 from cluster 13 and nodes 5 and 1
from cluster 9 are within its communication range. Therefore node 17 will store
3 cluster keys. Likewise, nodes 17, 5 and 1 also have two neighboring clusters
and will store 3 cluster keys each. On the other hand, node 6 is within the range
of node’s 17 but outside the radius of any node from cluster 19, therefore it will
only store 2 cluster keys.

3.2.3 Secure Message Forwarding

In this section we describe how information propagating toward a base station
can be secured to guarantee confidentiality, data authentication, and freshness.
Confidentiality guarantees that sensor readings and other sensitive information
(e.g. routing information) are protected from disclosure to unauthorized parties.
This can be achieved by encrypting data with a secret key. Data authentication
allows the base station to verify that data was really sent by the claimed sender
and not from an adversary that injected it in the network. Even if messages
cannot be inferred or forged, an adversary can capture them and replay them at
a later time (message replay attack). Data freshness ensures that messages are
fresh, meaning that they obey a message ordering and have not been reused.
Here we make the assumption that sensor readings must first be encrypted
(Step 1 in the description below) and then authenticated in a hop-by-hop manner
(Step 2) as data is forwarded to the base station through intermediate nodes.
If we are interested in data fusion processing then Step 1 should be omitted. It
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is only used when we want to make sure that sensor readings can only be seen
by the base station.

It is worth mentioning here that while we describe our protocol for the case
that a sensed event must be securely forwarded to a base station, the same
ideas can be used with any routing protocol that requires secure communication
between one-hop neighbors. The key translation character of our protocol is very
important in establishing a transitive chain of trust.

Step 1 (Optional)

To achieve the security requirements for the data D that will be exchanged
between the source node and the base station, we use a SNEP [Per02] like ex-
change, as shown in Figure 3.4. A good security practice is to use different
keys for different cryptographic operations; this prevents potential interactions
between the operations that might introduce weaknesses in a security proto-
col. Therefore we use independent keys for the encryption and authentication
operations, K¢n. and Ky ac respectively, which are derived from the unique
key K; that node shares with the base station. For example we may take
Kener = Fk,(0) and Kpyrac = Fk, (1) , where F is some secure pseudo-random
function.

yi — Ex...c(D)
31 — MACKMAC (yl)

c — wnlt

Figure 3.4: Step 1 for secure communication between source node and base station.
This step is applied by the source node alone.

As it can be seen from Figure 3.4, we use the encrypt-then-authenticate
method to construct a “secure channel” between source node and base station. It
is shown by Krawczyk [Kra01] that this is the most secure method for symmetric
encryption and authentication. Encryption is performed through the use of a
counter C' that is shared between the source node and the base station. We
do this in order to achieve semantic security; an adversary will not be able to
obtain partial information about a plaintext, even if it is the same plaintext that
is encrypted multiple times. This can also be achieved through randomization
but then the random value used in the encryption of the message must also be
transmitted. The counter approach results in less transmission overhead as the
counter is maintained in both ends. If counter synchronization is a problem
(usually the receiver can try a small window of counter values to recover the
message) then the counter or the random value used can be sent alongside the
message. We leave the choice to the particular deployment scenario as one
alternative may be better than the other.
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Step 2 (Required)

Since the encrypted data must be forwarded by intermediate nodes in order
to reach the base station, we need to further secure the message so that an
adversary cannot disrupt the routing procedure. Thus, no matter what routing
protocol is followed, intermediate nodes need to verify that the message is not
tampered with, replayed or revealed to unauthorized parties, before forwarding
it.

To secure the communication between one-hop neighbors, we use the pro-
tocol described in Figure 3.5. Each node (including the source node) uses its
cluster key to produce the encryption key K., .. and the MAC key K)o
These keys are used to secure the message produced by Step 1, before it is
further forwarded. (As we emphasized previously, if we are only interested in
hop-by-hop encryption and authentication, Step 1 should be omitted in which
case ¢1, in message 2 below, is simply the data D.) Since the nodes that will
receive that message do not know the sender and therefore the key that the mes-
sage was encrypted with, the cluster ID is included in c5. This way intermediate
sensors will use the right key in their set S to authenticate the message.

T« time()

Y2 — EKénCT(Cl7TchD)
ta  — MACk, , (y2)

¢ = CID|lylt2

Figure 3.5: Step 2 for secure communication between source node and base station.
This step is applied by all intermediate nodes, besides the source node.

If authentication is not successful, the message should be dropped since it
is not a legitimate one. Otherwise, each node will apply Step 2 with its own
cluster key to further forward the message. The fact that this key is shared with
all of its neighbors, allows the node to make only one transmission per message.
Notice that this is the point where our protocol differs from random key pre-
distribution schemes. To broadcast a message in such a scheme the transmitter
must encrypt the message multiple times, each time with a key shared with a
specific neighbor. And this, of course, is extremely energy consuming.

To continue the example shown on Figure 3.3, assume that node 14 must
send a message m toward the base station that lies in the direction of node 4.
It first encrypts and tags the message to produce a ciphertext ¢; according to
the protocol shown on Figure 3.4 and then wraps this to produce an encrypted
block ¢y according to the specifications shown on Figure 3.5. When ready, it
broadcasts ¢y to its neighbors. Eventually an encapsulation of ¢; will reach
node 12, maybe through node 10. This node will decrypt and authenticate the
message since it shares the same cluster key as node 14 and once all the checks
are passed, it will re-encrypt ¢; and forward it to its neighbors. One of them
is node 8 which is a member of cluster with CID= 9. This node will look at
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its set of cluster keys S and use the one which it shares with node 12 (the one
corresponding to CID= 13). Upon success it will re-encrypt the message with
its cluster key and forward it toward its neighbors. Thus nodes that lie at the
edge of clusters will be able to “translate” messages that come from neighboring
clusters and be able to authenticate them in a hop-by-hop manner.

In summary, every node decrypts and authenticates the packets it receives by
using the keys it derived from each cluster key. If the node belongs to a different
cluster than the transmitter of the message, it will find the right cluster key from
those stored in its memory and use it to re-encrypt the message and pass it along
to its neighbors. Thus messages get authenticated as they traverse the network.
However, while this approach defends against adversaries who do not possess
the required cluster keys, it falls prey to insider attacks since an adversary can
easily inject spurious messages after it has compromised a node and discovered
its cluster key. Unfortunately this kind of attack is not only hard to prevent
but is also hard to detect.

To increase security and avoid sending too much traffic under the same keys,
cluster keys may be refreshed periodically. To support such functionality, sensor
nodes can repeat the key setup phase with a predefined period in order to form
new clusters and new cluster keys. Since K,, is no longer available to the
nodes, the current cluster key may be used by the nodes instead. The fact that
each node can communicate with all of its neighbors using the current cluster
key makes it possible to broadcast a HELLO message in a secure way. The
message will contain the new cluster key, created by a secure key generation
algorithm embedded in each node. Since the key setup phase requires very low
communication overhead (as it will be showed in the next section) and takes
only a short time to complete, the refreshing period can be as short as needed to
keep the network safe. Alternatively, if we do not like the fact that certain nodes
are assigned the task of creating new keys (as they may be the compromised
ones), we can renew the cluster keys by periodically hashing these keys at fixed
time intervals.

3.2.4 Addition of New Nodes

This section address the problem of refreshing the network as sensors usually
have limited lifetime and usually die of energy depletion. We assume that new
sensors are arbitrary deployed. As they cannot be preassigned to a specific
cluster, they must i) associate themselves to an existing cluster, ii) become
informed about neighboring clusters and iii) retrieve and store the corresponding
cluster keys. Each new node comes equipped with a master key Kj;¢ that can
be used to generate the relevant cluster keys as it will be explained below.
Every new node transmits a hello message to its neighbors indicating its will
to become a member of some existing cluster. The message contains the ID of
the new node. Nodes receiving this message will respond with the cluster ID
they belong to, authenticated using their cluster key K.. This is necessary in
order to prevent an adversary for realizing the following attack. The adversary
may send fake messages containing various cluster IDs. When the new node
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makes the association between the cluster ID and the cluster key and store
it in its memory, the adversary can later compromise the node thus having
acquired the cluster key of any cluster in the network. To prevent this type of
impersonation attack the response sent by existing nodes is simply

CID, MACk (CID).

A new node receiving such a collection of cluster ID’s will consider itself a
member of the first such cluster while the rest will be the neighboring ones. We
need now a way to associate each CID with the corresponding cluster key. We
assume here that the cluster keys K¢ of the original nodes were formed using
a master key Ko through the application of some pseudorandom function
F. The use of a secure one way function F will prevent an adversary who
compromised a node and found its cluster key to recover the master key K¢
and hence the cluster keys of other nodes. Using F', the cluster key of the i-th
node is simply given by
K. =F(Knc,1).

Fach new node can use K ;¢ to generate the various cluster keys and store them
in its memory. Then it can participate in encrypting and forwarding messages
just like the original nodes. When this phase is over, the master key K¢ is
deleted from the memory of the nodes.

3.3 Key Establishment for Secure Aggregation

The protocol presented in the previous section uses clustering only for the key
establishment phase. After that phase, communication does not use any hierar-
chical model. In large sensor networks however, where more than one aggregator
exist, there is the need to use a hierarchical aggregation model, where aggrega-
tion nodes form a tree.

So now let us assume that the network is partitioned into distinct clusters and
that each cluster is composed of an aggregator and a set of sensor nodes (distinct
from other sets), which gather information and transmit it to the aggregator of
their cluster. The aggregator fuses the data from the different sensors, performs
mission-related data processing, and sends it to the base station. We do not
assume that the aggregators are more powerful in terms of energy, memory or
computational resources. Aggregators may form multiple levels of aggregation
hierarchies encompassing any number of sensor nodes where an aggregator can
both aggregate data as well as disseminate commands. Based on this model, we
present an efficient mechanisms for establishing trust between the aggregators
and the sensor nodes and provide for secure in-network processing.

Each sensor node, S;, has a unique key denoted Kg, which is computed
before deployment as follows:

KSi = F(K’ma S2)7
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where F' is a secure pseudo-random function, K,, is a master key and S; is the
unique identifier (number) for the i-th sensor node. This key will be shared
between the sensor node and its aggregator and will be used to exchange data
securely. Notice that an adversary upon compromising node S; cannot recover
the master key K, from the key Kg, because of the one-wayness of F. Hence
the rest of the network remains secured.

Each aggregator sensor node, A;, has K, stored in memory along with an
individual key K 4; which is derived from

KAj = F(KrrmAj):

as described above. We will see later on that K, is kept by A; for as long it is
necessary to establish secret keys with the nodes belonging in the A;’s group.
Then it is deleted from the memory of the aggregator.

The base station holds K, along with the keys of each sensor/aggregator
node in the network.

As we said, each sensor node is preloaded with the key Kg, which is the
result of the application of a secure pseudo-random function on the master key
K. In order for a node to communicate with its aggregator, this key must
be available in both sides. So, the node must first inform the aggregator about
its key in a secure way. This can happen by sending an appropriate HELLO
message Mpeio:

Si — A] : MHellm MACKSI (MH@ZZO)

where the My, consists of the sensor’s id S; and a nonce Ng, computed by
the sensor.

Having received this message, the aggregator A; is now able to compute
Kg, using the master key K,, and authenticate it by checking the MAC. If
the MAC verifies, the sensor node is included in the cluster and the aggregator
sensor stores all relevant information (such as Kg, and nonce identifier to avoid
replay attacks, etc.). Additionally the aggregator may send back a reply to
acknowledge the inclusion in the cluster (also authenticated with Kg,).

The same procedure is repeated for every node with its aggregator, in an
initial phase after the deployment of the network. This phase is secure as long
as the adversary does not know the master key. Therefore, we must assume that
the phase is too short in time for an adversary to capture a node and retrieve
the master key K,,.

The memory requirements of this phase are determined by the number of
keys each aggregator has to store, i.e., the number of nodes in each cluster.
Figure 3.6 shows the average number of keys each aggregator has to store as a
function of the number of aggregators in the network. As expected, the more
the aggregators in the network, the more the clusters that will be formed and
therefore, the less the average number of sensor nodes in each cluster.

After the completion of the phase, the master key is deleted by the memory
of every node. Since the security of our protocol depends on the deletion of
the master from the memory of the sensor nodes, we should take care that
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Figure 3.6: Average number of keys an aggregator has to store in a random network
of 1000 nodes.

the deletion is unrecoverable, for example by overwriting the master key (in
practice several times). We have now established a secure channel between the
aggregators and the sensor nodes.

3.4 Key Establishment for Secure Dissemination

Having secured the communication of sensor nodes toward their aggregators, we
now need to secure the reverse procedure: the dissemination of messages from
the aggregators to the sensor nodes. One simple but inefficient solution would
be to send a separate unicast message to each member of the group encrypted
and authenticated using the key shared between the aggregator and the specific
node. This would result in several transmissions of the same message, wasting
energy resources.

The solution to this problem is for the aggregators to construct and propa-
gate a group key to its members during the initial phase after deployment. In
this way, dissemination can take place later by a single broadcast of the message
encrypted by that key. Each aggregator A; constructs and sends a group key
Gk, to each sensor S; that belongs to its group:

A;: ¢=Ekg,,, (“Group key”, A;,Gg,),
g = MACKMAC (C)
Ai — Sj : Ai, C, 0

The group key is encrypted and authenticated each time using the sensor’s
private key K, , which is available to the aggregator as described in the previous
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section. First the aggregator encrypts the group key using the key K., derived
from Kg, and then creates a MAC o of the resulting ciphertext c.

Once the aggregators settle a group key Gk, with their group members,
they can broadcast commands encrypted and authenticated using Gg,. This
is sufficient to secure communication from an outsider who does not hold the
group key. However, an insider adversary, who has captured a group node and
retrieved Gk, can impersonate the aggregator and send forged messages to
nodes in the same group. Therefore we need to secure further the dissemination
process.

3.4.1 Defending Against Impersonation Attacks

We enhance the security protocol described above, in order to ward off insider
attacks that impersonate the aggregator and try to disseminate messages to the
group. The solution is that whenever an aggregator A; has a new command to
disseminate to the nodes, it attaches to it the nezt key, K;, from a one-way key
chain, as follows:

Ai: ¢= Egy, (“Command”, 4;, K)),
g = MACGKI (C)
A; — Group: A;,c,o

So, the [-th command sent by the aggregator to the group nodes contains the
[-th commitment of the hash chain and is encrypted and authenticated using
keys derived from G;,.

One-way key chains are a widely-used cryptographic primitive. To generate
a chain of length n we randomly pick the last element of the chain K,,. Then,
each element of the chain is generated by repeatedly applying a one-way function
F, until the K element, which is the commitment to the whole chain. We then
reveal the elements of the chain in reverse order,

Ko, Ky, Ky oo, Ky, K.

If we know that K;_; is part of the chain, we can verify that K; is also part
of the chain by checking that K;_1 = F(K;). Therefore, a node receiving a
command encrypted with the group key can verify its authenticity by checking
whether the new commitment K; generates the previous one through the appli-
cation of F'. When this is the case, it replaces the old commitment K;_; with
the new one in its memory and accepts the command as authentic. Otherwise
it rejects it.

One issue with the one-way key chain is that it limits the length of the trust
delegated to an aggregator. This is because the length of the chain determines
the number of packets that the aggregator can send to its sensor group members.
That is, for a chain of length n the aggregator can send at most n — 1 sepa-
rate commands at the nodes. An aggregator can renew its key chain as follows:
before the aggregator uses the last commitment, it creates a new hash chain
K|, K!,...,K],_,K/ and broadcast a “renew hash chain” command which

n—1»
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contains the new commitment K, authenticated with the last unused key of
the old chain. This essentially provides the connection between the two chains
and the group nodes will be able to authenticate commands as before.

So far we have limited the possibility of an impersonation attack, but we
have not eliminated it. There is still a scenario were an adversary can jam
communications to a sensor S; so that it misses the last k¥ commands and hence
commitments. Then it introduces new commands by “recycling” the unused
commitments. It will be impossible for sensor S; to notice the faked commands
as the ordering of commitments is followed.

In order to defend against an attack like this we may assume that sensors
are loosely time synchronized and commands are issued only at regular time
intervals. That means a packet broadcast from the aggregator at time slot ¢
contains commitment K;. If a sensor node does not receive anything within
the next d slots and the last commitment was K;, it will expect to see the
commitment Ky,4 that accounts for d missing commands. In this way it cannot
be misled and authenticate unused commitments.

Finally, we must note that an implicit defense against impersonation attacks
that not only eliminates but also helps detect these types of attacks is to have
the sensor nodes respond to the aggregator using the shared key Kg,. In this
manner, even if an attacker has issued false commands, it will not be able to
use the information sent by the sensor nodes. Additionally, if the aggregator
receives responses to commands that it has not issued, it will become aware
that an attacker has compromised some nodes in the cluster and eventually
take corrective actions.

3.5 Experimental Analysis

We simulated a sensor network to determine some parameter values of our
scheme. For this purpose we used the SensorSimlII [Ulm00], a simulator frame-
work written in Java. We deployed several thousands of nodes (2500 to 3600)
in a random topology of uniform distribution and ran the key setup phase. Of
particular interest is the scalability, the communication overhead and memory
requirements of our approach.

The storage requirements of our approach are determined by the number
of cluster keys stored in each node. We performed experiments with various
network sizes and we found that the curves matched exactly (modulo some small
statistical deviation). So, we experimented with respect to network density.
Figure 3.7 shows the average number of cluster keys that each node stores as
a function of the average number of neighbors per node (density of network).
The number of cluster keys also indicates the number of neighboring clusters
that each node has. As is obvious from the figure, the number of stored keys
is very small and increases with low rate as the number of neighbors increases,
requiring negligible memory resources from the sensor node. The point to be
made is that the number of required keys remains independent of the actual
network size. Thus our protocol behaves the same way in a network with 2000
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Figure 3.7: Average number of cluster keys held by sensor nodes as a function of
network density.

or 20000 nodes.

In Figure 3.8 we further show the average number of nodes per cluster for
various network densities. Nodes of the same cluster share a common cluster
key, and thus an adversary, upon compromising such a node, can also control the
communication links of the rest of cluster nodes. Thus, having small clusters, as
is indicated in the figure, minimizes the damage inflicted by the compromised
node and prevents its spreading to the rest of the network.

The communication traffic required by the key setup phase is partly due
to the number of messages sent by the cluster heads to their cluster members
during phase one, and partly due to the messages sent by all nodes of the
network during the link establishment phase. The former quantity depends on
the number of clusterheads and is shown in Figure 3.9. The second quantity, is
always constant and equal to n, the number of nodes in the network. Bearing in
mind that the key setup phase is executed only once, the total communication
overhead due to that phase is kept very low. Further evidence to this fact is
given in Figure 3.10, where the average number of messages required per node
to set up the keys is shown. Thus the overall time needed to establish the keys
is a little more than transmission of one message plus the time to decrypt the
material sent during this phase.

3.6 Security Analysis

We now discuss one by one some of the general attacks [Kar03] that can be
applied to routing protocols in order to take control of a small portion of the
network or the entire part of it.
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Figure 3.8: Average number of nodes in clusters as a function of network density.
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Figure 3.9: Percentage of cluster heads with respect to total semsor nodes in the
network.

e Spoofed, altered, or replayed routing information. As sensor nodes do not
exchange routing information, this kind of attack is not an issue.

o Selective forwarding. In this kind of attack an adversary selectively for-
wards certain packets through some compromised node while drops the
rest. Although such an attack is always possible when a node is com-
promised, its consequences are insignificant since nearby nodes can have
access to the same information through their cluster keys.
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Figure 3.10: Number of messages exchanged per node for organization into clusters
and link establishment in a network of 2000 nodes and various densities.

o Sinkhole and wormhole attacks. Since all nodes are considered equal from

the key management protocol and there is not a distinction between more
powerful and weak nodes, an adversary cannot launch attacks of this kind.
Furthermore, in our protocol such an attack can only take place during
the key establishment phase. But the authentication that takes place in
this phase and its small duration, as we described in the previous section,
makes this kind of attack impossible.

Sybil attacks. Since every node shares a unique symmetric key with the
trusted base station, a single node cannot present multiple identities. An
adversary may create clones of a compromised node and populate them
into the same cluster or the node’s neighboring clusters but this does not
offer any advantages to the adversary with respect to the availability of
the information to the base station.

Hello flood attacks. In our protocol, nodes broadcast a HELLO message
during the cluster key setup phase in order to announce their decision
to become clusterheads and distribute the cluster key. Since, however,
messages are authenticated this attack is not possible. (A necessary as-
sumption for all key establishment protocols is of course that the duration
of this phase is small so that an adversary cannot compromise a node and
obtain the key K,,. In the previous section we presented evidence that
this is indeed the case).

However, this kind of attack is possible during key-refresh. If we assume
that a laptop-class attacker has compromised a node and retrieved its
cluster keys then she could broadcast such a HELLO message during a key
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refresh phase and could attract nodes belonging to neighboring clusters
as well and form a new larger cluster with himself as a clusterhead. One
way to defend against this is to constraint the key-refresh phase within
clusters, i.e., not allow new clusters to be created. Therefore, cluster keys
will be refreshed within the same clusters, and an adversary cannot take
control of more nodes than she already has, that is the nodes within the
same cluster. A better way, however, which makes this kind of attack
useless, is to refresh the keys by hashing instead of letting nodes generate
new ones.

o Acknowledgment spoofing. Since we do not rely on link layer acknowledge-
ments this kind of attack is not possible in our protocol.

The power of our proposal lies exactly in its simplicity. No location informa-
tion, path reinforcements or routing updates are used. By strengthening security
with encryption and authentication, it becomes really hard for an adversary to
disrupt the routing procedure.

3.7 Conclusions

We have presented a key establishment protocol that is suitable for sensor net-
work deployment. The protocol provides security against a large number of
attacks and guarantees that data securely reaches the base station in an energy
efficient manner. Our protocol is based on hop-by-hop encryption, allowing
nodes to share keys only with neighboring nodes. The protocol has a number
of important characteristics among which are:

e Resiliency against node capture and replication. This is due to the fact
that keys are localized. After a deployment phase, nodes share a handful
of keys to securely communicate with their neighbors. Thus compromised
keys in one part of the network do not allow an adversary to obtain access
in some other part of it.

e Efficient broadcasting of encrypted messages. When a node wants to
broadcast a message to its neighbors it does not have to make multi-
ple transmissions encrypted each time with a different key. We achieve
this by encrypting messages with a cluster key which is shared between
neighboring nodes. This makes our scheme very energy efficient.

e Intermediate node accessibility of data. When multiple nodes receive the
same message, some of them may decide not to forward it. However, this
is not possible unless nodes can have access to encrypted data. Using our
approach, nodes can “peak” at encrypted information using their cluster
key and decide upon forwarding or discarding redundant messages thus
enabling data aggregation processing.
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e Scalability. Our protocol scales very well as the key establishment phase
requires only local information and no global coordination. Furthermore
the keys that need to be stored at each node do not depend on the size
of the sensor network but only on its density (the average number of
neighbors per node). Thus our protocol behaves similarly in networks of
2000 or 20000 nodes as long as the density is the same.

The keys established by our protocol can be used to secure messages sent
by the sensor nodes toward the base station, or single command messages dis-
seminated by the base station toward the nodes. However, there is another
communication paradigm in sensor networks, which cannot be secured through
shared keys. This is the dissemination of bulk data, e.g., code updates. In the
next chapter we propose a new security scheme with asymmetric cryptography
properties, which make it appropriate for authenticating sequence of packets.



Chapter

Secure Network Programming

4.1 Introduction

Traditional methods of programming sensor nodes with a new binary require
physical access to the nodes themselves: the application is developed in a PC
and the resulting program image is loaded to the node through the parallel or
the serial port. The same process has to be repeated for all the nodes, which
have to re-deployed back to the field. Not only this solution does not scale to
large number of geographically distributed nodes, but in many cases it might not
even be possible to access the nodes. For these reasons, network programming
protocols have emerged that disseminate the new code remotely, over the wireless
link to the entire network, in a multi-hop fashion. Each sensor node propagates
any received updates to its immediate neighbors, which in turn do the same
until the new binary reaches all the nodes. In-system programmability allow
nodes to reprogram themselves and start operating with the updated code.

A number of network programming protocols suitable for sensor networks
have been proposed. These protocols include Deluge [Hui04], MOAP [Sta03],
MNP [Kul05], INFUSE [Aru04] and Sprinkler [Nai07]. The protocols focus
mainly on the reliability and the latency of the dissemination, but from a security
point of view all of them assume that the nodes will behave in a legitimate way,
meaning that no node can be compromised and controlled by an adversary.
As a result nodes do not care about authenticating the source of the program.
This fact allows an attacker to approach the deployment site and disseminate
malicious or corrupted code in the network, reprogramming all the nodes at
will. Thus, in the same way that a network programming protocol can help the
network administrator with the program update procedure, it can also provide
an easy way for an attacker to compromise the whole network by installing
malicious code.

In this chapter we present Scatter, a protocol that secures network program-
ming and allows sensor nodes to efficiently verify that the new code originates

o1
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from a trusted source, namely the base station. With this security feature
added, an attacker could not authenticate herself to the network, and therefore
the nodes will reject malicious updates. Therefore, having secured the com-
munication of data from the nodes toward the base station in Chapter 3, in
this chapter we deal with the reverse problem: the communication of data from
the base station toward the network. Even though solutions for authenticating
single broadcast messages exist (see for example the work from Benenson et
al. [Ben06]), authenticating sequence of messages poses different requirements
and calls for different kind of solutions.

We start by defining network programming in Section 4.2 and give some
details about Deluge, a widely used protocol for this operation. In Section 4.3,
we present the requirements for securing network programming protocols, and in
Section 4.4 we elaborate on the main approaches that exist and which approach
Scatter follows to be more efficient. In Section 4.5, we present a r-time signature
scheme appropriate for sensor networks, which is used by Scatter to authenticate
program images. Section 4.6 describes the implementation and experimental
evaluation of Scatter in different sensor platforms. Finally, Section 4.7 concludes
this chapter.

4.2 Network Programming

It is important to give some details about network programming protocols in
sensor networks that will help us understand better the process of authenticating
this procedure. In general, network programming is achieved by the following
steps (see Figure 4.1):

Base Station

ﬁ Sensor Node

Application :> Dissemination

Radio || External Program
image file data :>

packets [ flash memory

N

Figure 4.1: Network programming process.

1. The base station reads the new application binary code and breaks it into
packets to disseminate.

2. The base station sends the packets to the sensor nodes within communi-
cation range.

3. The nodes store the packets in the external flash memory after receiving
them. They request retransmission of any missing packets.
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4. The nodes forward the packets to any of their neighbors that have not
received them, until all nodes get the new code.

5. After all packets have been received, the code lies in the external flash
memory of the nodes. The nodes verify the program image and call the
boot loader to transfer the program code to the program memory. Then
the boot loader restarts the system and the new program begins execution.

Since Deluge is one of the most commonly used protocols for network pro-
gramming in TinyOS, we focus on it in this chapter. However the rest of the
protocols use similar principles, so the solutions described here are also applica-
ble to them.

Deluge propagates a program image by dividing it first into fixed-size pages
and then using a demand-response protocol to disseminate them in the network.
As soon as a node receives a page, it makes it available to any of its neighbors
that also need it. At the same time it sends a request to the sender in order
to receive subsequent pages. In this way, Deluge supports a sort of pipelining:
already received pages are forwarded further to the rest of the nodes while the
program image is not yet complete and new pages keep coming in.

The integrity of each page is verified by using a 16-bit cyclic redundancy
check (CRC) across both packets and pages. So, if a packet gets dropped or
corrupted, the node requests from the sender to send it again until the page is
completely and correctly received. This means that any authentication protocol
added on top of Deluge does not need to be robust on packet loss. It can safely
assume that packets always reach their destination. Also, note that since Deluge
does not start receiving the next page if the previous one is not completed,
an authenticated broadcast protocol does not need to deal with out-of-order
delivery of pages (even though packets may do arrive our-of-order).

4.3 Problem Definition

We now define more formally the problem that we study in this paper; we
want to provide an efficient source authentication mechanism for broadcasting
a program image from the base station to the sensor network. While the authen-
tication mechanism should still allow efficient dissemination procedures, such as
pipelining, it should also block malicious updates as early as possible.

The most natural solution for authenticated broadcasts is asymmetric cryp-
tography, where messages are signed with a key known only to the sender.
Everybody can verify the authenticity of the messages by using the correspond-
ing public key, but no one can produce legitimate signed messages without the
secret key. However, public key schemes like RSA, have been long thought
to be impractical for the limited computational, memory and energy resources
of sensor nodes. Gura et al. have shown that Elliptic Curve Cryptography
(ECC) can provide substantial performance gains over RSA for constrained
hardware [Gur04]. For example, TinyECC [Liu08a] provides a freely available
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ECC implementation for TinyOS, which runs 12 to 16 seconds to verify a sig-
nature on MicaZ motes.

On the other hand, block cipher based hash functions run about hundreds
or thousands of times faster than public key schemes. Therefore, our goal is to
provide an efficient authentication scheme for a finite stream of data based on
symmetric cryptography primitives while at the same time having the properties
of asymmetric cryptography. In this way, we can avoid the use of ECC or RSA,
and reach a much faster and energy efficient solution for authenticating the
program image on the motes.

The solution should satisfy the following requirements:

1. Low computational cost. Asymmetric cryptography involves high com-
putational cost and is not preferable for use in sensor networks. The solu-
tion should impose public-key properties, but at the same time minimize
the computational cost for signature verification at the receivers (sensor
nodes).

2. Low verification time. The rate at which a code segment is transmitted
to the receiver should not be reduced significantly by the authentication
protocol.

3. Low communication overhead. The signature transmitted with data
should constitute a small percentage of the total bytes, imposing a low
communication overhead.

4. Low storage requirements. Any cryptographic material that needs to
be stored in the sensor nodes should be as small as possible, given the
nodes’ limited memory resources.

Moreover, since we are providing an authenticated broadcast protocol we
need to assure the following security requirements:

1. Source authentication. A mote must be able to verify that a code
update originates from a trusted source, i.e., the base station. This means
that an attacker should not be able to send malicious code in the network
and reprogram the nodes.

2. Node-compromise resilience. In case an attacker compromises a node
and read its cryptographic material, she must not be able to reprogram
any other non-compromised node with malicious code.

Even though we do not address protection against DoS attacks, the solution
must provide some resilience against such attacks in the following sense: In case
an attacker is trying to transmit malicious code to the network, any receiving
node should be able to realize this as soon as possible and stop receiving it or
forwarding it to other nodes. This means that nodes should not authenticate
the code after its reception but rather during that process.
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4.4 Design Approaches and Related Work

As we said, asymmetric cryptography is the most natural solution to authen-
ticated broadcasts. So, one approach would be to compute a digital signature
for the whole program image. However, that would require the nodes to receive
and buffer the entire image in order to verify the signature, which is clearly not
possible for sensor nodes, given their limited memory resources. Moreover, the
receiver needs to be able to “consume” each page it receives, i.e., send it to its
own neighbors (pipelining) as well as store it to the external flash memory.

If we view program images as digital streams of data, we can follow the
solution by Gennaro and Rohatgi [Gen01] for signing a program image. What
they proposed is to divide the stream into blocks and embed some authentication
information in each block. In particular, their idea is to embed in each block
a hash of the following block. This way the sender needs to sign just the first
hash value and then the properties of this signature will propagate to the rest
of the stream through the “chaining” technique.

|Signature

| Page 1 | Page 2 | Page N-1| Page N

A W

o

Figure 4.2: Hash chain construction for the pages of a program image.
In our case, given a program image divided into N fixed-size pages
P, P, ...,Py
and a collision-resistant hash function H, we construct the hash chain
h; = H(Piy1||hiy1), i=0...N =2

and we attach each hash value h; to page P; (see Figure 4.2), where “||” denotes
concatenation. For the last hash value we set

hN,1 = H(PN)

Now, we can sign only the hash chain commitment, hg, and the nodes that
receive and verify that signature will be able to authenticate all the pages by
just computing the same hash values and compare them with those transmitted.

4.4.1 DOS-attack Resilience

One important design choice is whether to construct the one-way hash chain over
the pages of an update or the packets that compose the pages. In the former
case the drawback is that the nodes need to receive the whole page before they



56 SECURE NETWORK PROGRAMMING 4.4

are able to verify its hash. Since a page is usually composed of hundreds of
packets, this gives an advantage to an attacker to launch a DOS-attack, by
sending a few malicious packets. After receiving the page, a node will realize
that the hash verification fails and it will request the page again, as it will not
know which specific packets caused this fail.

The alternative approach of computing the hash values for each packet is
followed by both Dutta et al. [Dut06] and Deng et al. [Den06]. Since these
protocols authenticate each packet separately, they can stop receiving them as
soon as they find the first non authentic packet. Then the node can request
that packet again. However, this comes at a big price.

In particular, Deng et al. [Den06] construct signed hash trees (similar to a
Merkle trees) based on the hashes of each packet in the program image and
they transmit these trees before the actual data. This increases the overhead
of packets sent and received by the motes by about 28%. Moreover, due to
memory constrains in the motes, these values need to be stored and loaded
from the EEPROM each time a packet arrives, which is a very energy consuming
operation for the motes [Sta03].

Similarly, Dutta et al. [Dut06], compute the hash of each packet and place
it in the previous packet. This increases the overall data that have to be trans-
mitted besides the signature, compared to constructing and transmitting a hash
value for each page. It also increases he computations a mote has to perform
in order to verify all these hash values, besides the RSA signature verification
that this protocol uses.

So, applying a page-level hashing offers better performance but less resilience
under a DOS attack, while applying a packet-level hashing imposes high over-
head in all cases, in order to offer a better resilience under this attack. In our
protocol we have chosen the former and simpler approach of constructing the
hash chain on the pages of the program image. This is also followed by other
protocols, like Sluice [Lan06]. In this work we concentrate on the signature
construction and verification, rather on the hash chain construction. Let us
note that applying a different hash granularity is possible in Scatter, without
affecting the signature scheme proposed.

4.4.2 Signature Scheme

The most energy consuming operation in the process of secure code dissem-
ination is the authentication of hg, which is signed and released before the
transmission of the pages. Therefore, choosing which security scheme to apply
for this operation is important in the overall protocol’s performance. All cur-
rently proposed solutions [Lan06; Dut06; Den06; Liu08b; Sha07] use a public
key scheme like RSA or Elliptic Curve Cryptography (ECC) for signing the hash
commitment. In the next section we are going to show that there is a much more
efficient way that can be applied for the case of network programming protocols.

We will base our analysis on the fact that real world software updates in
sensor networks do not constitute an everyday operation but rather they are
performed occasionally. Therefore, we do not need to authenticate an unlimited
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number of broadcasts. We only need to be able to do so for a sufficiently large
number of times. This fact allows us to use r-time signature schemes, which
exhibit fast verification times.

4.5 An r-time Signature Scheme

An r-time signature scheme is similar to a public-key scheme in that it can be
used to sign messages that can be verified using publicly known information.
These r-time signatures decrease dramatically the signing and verification time
compared to public-key signatures, however, one can only sign up to r messages
with a given key pair. After that, the security level drops below acceptable
limits and a new key pair must be generated. But with regards to network
programming, if we can efficiently sign and verify, for example, r = 32 new
program images before we redistribute a new public key, we have a tradeoff that
makes this an attractive solution.

Recently, some signature schemes were proposed that seem attractive for
sensor networks. For example, Reyzin and Reyzin [Rey02] introduced HORS,
an r-time signature scheme with efficient signature and verification times. This
scheme was further improved by Pieprzyk et al. [Pie03]. Both of these r-times
signature schemes can sign several messages with the same key with reasonable
security before they can get compromised. However there are some drawbacks
that prevent us from applying those schemes to sensor networks. The main one
is the size of the public/secret key pair and the size of the generated signatures.
For example, the HORS scheme uses a public key size of 20 KBytes for r = 4,
which is not suitable for use in sensor networks. It also grows unacceptably high
if we want to sign more messages (bigger r) and keep security at an acceptable
level.

To overcome these drawbacks, we propose a novel r-time signature scheme,
which is optimized for use in sensor networks. This scheme manages to drop the
signature and public key sizes to values that fit in the memory of sensor nodes,
and also reduce the signature verification time to that of a few hash operations.

Let F' be an I-bit one-way function. First we need to produce the secret and
public key pair. To do this the signer applies the following steps:

Secret Key Generate ¢ random [-bit quantities for the secret key:

SK = (s1,...,5t)-
Public key Compute the public key as follows: Generate ¢t hash values

(U1, ..., ug),
where
ur = F(s1),...,ur = F(ss).

Separate these values into d groups, each with ¢/d values. Use these values
as leaves to construct d Merkle trees, as shown in Figure 4.3. The roots
of the trees constitute the public key PK of our scheme.
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Figure 4.3: Public key construction using Merkle trees.

A Merkle hash tree is a complete binary tree where each node is associated
with a value, such that the value of each parent node is the hash function on
the values of its children:

v(parent) = H(v(left)||v(right))

where the function v here stands for the value of a node and H for a hash
function.

Using the Merkle trees we have achieved a public key size of a few hash
values, i.e., the roots of the Merkle trees. These values need to be passed to
all sensor nodes in an authenticated way. This can be done for example during
initialization of sensor nodes.

Next we show how any message m can be signed using this secret and public
key pair. The procedure for this is described in the following steps (see also
Figure 4.4):

1. Use a cryptographic hash function H to convert the message to a fixed
length output. Split the output into k substrings of length log, ¢ each.

2. Interpret each substring as integer in the range [1...t]. Use these integers
i1,149,...,1, to select a subset o of k values out of the set of secret values
SK = (s1,...,5)-

3. The signature of the message m is made up by the selected secret values
along with their corresponding authentication paths.

By authentication path of a secret value we mean the values of all the nodes
that are siblings of nodes on the path between the leaf that represents the secret
value and the root of the corresponding Merkle tree, as shown in Figure 4.5.
Note that for each message that we sign, a part of the secret key is leaked out.
That’s why this process cannot be repeated ad infinitum.

A node that has received the message m and wants to verify its signature,
recomputes the hash value of the message, reproduces the same indices and
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Figure 4.4: Producing k indices of secret values from a message m.
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Figure 4.5: The nodes shaded gray constitute the authentication path of the marked
leaf.

picks the corresponding values of the set PK. Remember that the node has the
public values PK (roots of the Merkle trees), but not the Merkle trees. Then
it evaluates each authentication path of the signature to reproduce the root of
the Merkle tree and compare it with the corresponding member of the public
key PK that it has in its memory. The signature is accepted if this is true for
all k values. The detailed description of the algorithm is shown in Figure 4.6.

Let us emphasize that the verification of the signature at the sensor nodes
requires only hash and comparison operations. Both of these operations can be
performed very fast and efficiently in the nodes. For example, the time to hash
one block using MD5 in a sensor node is 2.58 ms, as we will see in Section 4.6.3.
The number of hash operations that will be needed depends on the number and
the size of the authentication paths (or else, the size of the signature), which
also determines the security level of the scheme.

The r-time signatures scheme we described can be tuned by setting various
parameters, like the number of secret values t, the number of Merkle trees T,
or the number of k parts that we split the hash of the message m (i.e, number
of secret values that we release in the signature). The values that we choose
for these parameters will determine the signature size and the public key size,
two quantities that are important for the efficiency of the scheme, but also
its security level. We study how these quantities are affected by our protocols
parameters in the following sections.
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Key Generation
Input: Parameters [,k,t

Generate ¢ random [-bit strings s1, Sa, ..., S¢.
Let u; = F(s;) for 1 <i <t.
Group ¢ hash values uy,ug, ..., us into d groups of ¢/d values.

Place each group at the leaves of a Merkle tree,

constructing d Merkle trees.

Let wy,wo, ..., wy be the roots of the Merkle trees.
Output: PK = (k,wy,ws,...,wy) and SK = (k,s1,82,...,5;)

Signing
Input: Message m and secret key SK = (k, s1,82,...,5;)
Let h = H(m).

Split h into k substrings hq, he, ..., Ay, of length log, ¢ bits each.
Interpret each h; as an integer i; for 1 < j < k.
Let p;; = (s4;, AP(si;))), i.e., the secret value s;; along with
its authentication path AP(s;;).
Output: g = (MI] ) Mgy -« - 7M2k)

Verifying

Input: Message m, signature o = (uf, ..., pt},) and public key

PK = (k,wy,...,w;)
Let h = H(m).
Split into k substrings hy, he, ..., hy, of length log, ¢ bits each.
Interpret each h; as an integer i; for 1 < j < k.
Compute which Merkle tree corresponds to i;: M; = i;/(t/d) for
1<j<k
Hash the values in each pj, to produce the root w?vjj.

Output: “accept” if for each 5,1 < j <k, wEWj = wyy,; otherwise
“reject”

Figure 4.6: The r-time signature scheme. F is a one-way function and H is a hash
function.

4.5.1 Public Key and Signature Size

There is a trade-off between the public key size and the signature size. The
public key stored in each sensor node is given by the hash values residing at the
roots of the trees. The more the number of the trees, the bigger the public key
becomes but the smaller the signature size becomes. To see why, notice that
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the signature size depends on the length of the authentication paths, which are
ultimately related to the height of the Merkle trees. More trees means less secret
values per tree and hence smaller height.

Ideally, we would like both of these sizes to be as small as possible. The
signature is transmitted over the radio to be received and verified by the motes,
so the smaller it is the less energy and time will be needed for these operations.
Similarly, the public key is stored in the memory (RAM) of the motes, to be
used for the signature verification procedure. So, there is a limit on how large
it can be. To calculate the formulas that give these two quantities, let T" denote
the number of trees. Hence the public key size is simply

|PK| = |n|T, (4.1)

since every root contains a hash value of its children. We use the notation |h|
for the output of the hash function h in bits. For example, |h| can be equal to
128 bits in the case of MD5 or 160 bits in the case of SHA-1.

If we have T' Merkle trees and ¢ secret values, there can be at most t/7T values
stored at the leaves of each tree. Thus the height of each tree (and the length
of each authentication path) is simply log,(t/7). The signature S consists of &
such authentication paths, where each path is a sequence of hash values of |h|
bits. Thus the signature size is given by

15| = [hl(kog, 7). (42)

This equation can be simplified further if we recall how the k secret values
are selected. The message m to be authenticated is first hashed to obtain H(m),
a value that is |h| bits long. Then these |h| bits are broken into k parts, where
each part references one of the secret values. Thus the number of secret values
t must be equal to 2/"/% or equivalently

|h| = klogyt. (4.3)
Combining Equations (4.3) and (4.2), we find that the signature size is given by

S| = [RI(|h] — klog, T). (4.4)

4.5.2 Security Level

Next we calculate the security level of the scheme, since it is also affected by
the values we choose for the parameters of the scheme. Let r be equal to
the number of messages that we allow to be signed with the current instance
of the secret key. For an analysis (see also the work by Leonid and Natan
Reyzin [Rey02]) we assume that the hash function H behaves like a random
oracle and that an adversary has obtained the signatures of r messages using
the same setting of secret/public key. Then the probability that an adversary
can forge a message is simply the probability that after rk values of the secret
key have been released, k elements are chosen at random that form a subset of
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the rk values. The probability of this happening is (rk /t)k If we denote by
3 the attainable security level in bits, by equating the previous probability to
27%, we see that 3 is given by

Y = k(logy t —logy k — logs 1) (4.5)
and by using Eq. (4.3), we get
Y =k(|h|/k — logak — logar). (4.6)

4.5.3 Signature Verification Time

To be able to decide on particular values for r, k and T, we would also like
to have an estimation of how these parameter affect the verification time of
the signature. We implemented the r-time signature scheme in TinyOS and
measured the verification times for various values of T on the Mica2 platform.
Figure 4.7 shows the results.

300 T
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2801 —&— r=32, k=9
—=— r=16, k=10
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Figure 4.7: Signature verification time as a function of T.

For the signature verification in Figure 4.7, the time needed is directly de-
pendent on the signature size. The parameter determining the signature size is
the number of Merkle trees T'. As we build more trees on the secret values, their
height gets smaller, and therefore the signature size is reduced. Consequently,
the verification time at the mote’s side is also reduced.

Figure 4.8 is a graphical representation of Eq. (4.1), using MD5 to produce
the hash values, which means |h| = 128. Let us keep the public key size equal
to approximately 1 KByte, so that it fits well in the memory of a typical Mica2
node (approximately 4 KB of RAM). So, we set 7' = 64. Figure 4.7 shows the
verification time of the signature as a function of the number of Merkle trees T,
for different values of r (number of images that can be signed using the same
keys) and k (number of substrings that we split the hash value of the message
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Figure 4.8: Public key size as a function of T'.

into). Let us say we want to sign r = 64 messages before we need to update the
keys. What would be a good value for k to choose? Figures 4.9 and 4.10, show
a graphical representation of Equations (4.4) and (4.6) respectively, for T' = 64
and |h| = 128.
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Figure 4.9: Signature size as a function of k.

Observing Figures 4.9 and 4.10, a good value for k could be k = 8. Then,
for r = 64 we would get a security level of around 60 bits against passive
adversaries, and a signature size of 1280 bits. The verification time of this
signature, from Figure 4.7 would be equal to 186.3 ms. Notice that we used
standard implementations of hash functions, so we believe that this signature
verification time can be improved even further using optimized code for the
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Figure 4.10: Security level as a function of k.

particular hardware of the motes.

We can see now the advantage of using this r-time signature scheme to au-
thenticate a message in sensor networks. If we had chosen to use Elliptic Curve
Cryptography, the signature verification would be much larger. For example,
TinyECC [Liu08a] provides ECDSA [Ame98] verification functionality on the
sensor nodes that takes between 12 and 16 seconds, which is highly inefficient
compared to the verification times of the order of milliseconds, given in Fig-
ure 4.7.

To get a complete picture of the performance of a programming protocol like
Deluge that uses this r-time signature scheme to authenticate the broadcasted
program images, we need first to show how the integration of the two schemes
is done, and then measure the overall time to download and authenticate a
complete image to a sensor node. We do this in the next sections, presenting
also some implementation details.

4.6 Implementation and Experiments

4.6.1 Implementation

We implement Scatter as an extension to Deluge in TinyOS distribution. Our
implementation has two parts, one for the base station side and one for the
sensor side programs. The former extends the Deluge Java tools to construct
and inject new code dissemination packets into the sensor network. The latter
is written in nesC [Gay03] and runs on regular sensor nodes.

We add two main functionalities in the Java tools on the base station side:
Computation of the hash values of the image pages, and signing of hg, the
public commitment of the hash chain we have built in order to authenticate
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the sequence of pages. In the previous section we described how we can create
a signature for a message m using an r-time signature scheme. Now, we will
apply this scheme to sign hg, the public commitment of the hash chain we have
built in order to authenticate the sequence of pages.

Figure 4.11 shows in detail the process of preparing a secure program image
at the PC side for dissemination in the network. Deluge first partitions the
image into P pages, given as a parameter the page size |Page|. Each page is
further partitioned into N packets, which are transmitted to the sensors. For
completeness of the figure, we show what constitutes a program image that
Deluge transmits to the nodes: some metadata associated with it, information
about the length of the image in bytes, and the image itself. To the pages that
the image is partitioned to (1081 bytes in this example), Deluge also appends a
CRC that is calculated for each page.

According to the authentication scheme, after we partition the image into
pages, we compute a hash chain in reverse order from the last page to the first.
We need to append these hash values at the end of the corresponding pages.
If we use MD5, a hash value is 16 bytes, so it fits in a packet of 23 bytes (the
default value for TinyOS packets). So, each value of the hash chain padded with
0s (to give 23 bytes) is attached at the end of the corresponding page.

The final step includes the addition of one or more pages at the beginning of
the image that stores the first value of the hash chain along with the signature
we produced for it using the r-time signature scheme. The number of the extra
pages is determined by the size of the signature (normally it should not be more
than 2 pages). If |\S| denotes the size of the signature, then the number of the
extra pages is [|S|/|Pagel|]. If necessary, we add some padding Os at the end of
the signature to fill up the page.

Figure 4.11 illustrates an example program image, where pages 0 and 1
are reserved for the signature. The original image is stored in pages 2...P +
2. Besides these two pages, the only extra information transmitted with the
program image is the last packet of each page, containing the corresponding
hash chain values.

We now move to the side of the motes and describe the verification process
for the signature and the authentication of each page. In particular, we are
interested in the overhead posed by this security protocol in terms of memory
and time.

4.6.2 Memory Requirements

The dissemination and authentication of the code is done in a per-page basis.
As soon as the last packet of a page is received, the mote checks to see if it is
complete and issues a request back to the sender for any missing packets, like in
original Deluge. When the page is complete, a CRC check is done to verify its
integrity. Then the mote needs to verify that the hash value of the page it just
received is the same as the corresponding value that came with the previous

page.
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dissemination into the network.
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Figure 4.12: The order at which a mote receives the signature, the pages and their
hash values. Verification of the signature is possible by storing only one path at the
time.

To be able to hash the page, the mote needs to buffer it in RAM. This
requires a buffer equal to the page size. The default value of Deluge for that
parameter is 1104 bytes, so it perfectly fits in a sensor node’s memory (being
4KB for Mica2, or 10KB for Tmote). Of course, the page size is a parameter
of Deluge that can easily be changed to any smaller value if the final memory
requirements exceed the available resources.

An exception for what is described above is the first two pages that the mote
receives, which contain the signature of the hash chain commitment. They also
need to be stored in EEPROM as the rest of the pages. However, the mote does
not need to keep the whole page in RAM, but rather just each authentication
path. This is because the signature is made up by authentication paths and the
authentication of each path can be done independently by the others.

Referring to Figure 4.12, the mote first receives the hash value of Page 1.
This will provide the indices to the public values. Then, the first authentication
path of the signature will be received. The verification of that path evolves only
a few hashing operations and a comparison of the result with the corresponding
public value. This can be done fast enough by the mote, so that the path has
been verified before the next path starts coming in. So, only a temporary storing
is needed, equal to the size of a path (dependent on the height of the Merkle
trees at the base station).

4.6.3 Experimental Evaluation

In this subsection, we report the experimental evaluation of Scatter in two
different hardware platforms, namely MicaZ and Mica2. For comparison pur-
poses, we perform the same set of experiments with Deluge, as well as Seluge.
We choose to compare Scatter with Seluge, because according to their experi-
ments [Liu08b], their protocol outperforms the approach of Deng et al. [Den06]
and Dutta et al. [Dut06].

The main overhead in execution time that Scatter imposes on Deluge is due
to the main two security operations evolved, i.e., hashing of the pages and ver-
ifying the signature. We measured that overhead for each operation separately,
as well as the total overhead compared to plain Deluge over a complete image
transfer, using our implementation in Mica2 motes.

We first examined the execution time needed to hash a page of default size
(1104 bytes). This is shown in Table 4.1 for two different hash functions, SHA-1
and MD5. It is obvious from the results that the time performance of MD5 is
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Table 4.1: Time performance of hash functions in Mica2 platform.

Function Time to hash Time to hash
one block 1104 bytes

SHA-1 7.56 ms 131.7ms
MD5 2.58 ms 49.6 ms

considerably better than that of SHA-1. For both functions we used publicly
available code and no optimization was made for the specific hardware. So,
these values can be further improved.

We have already shown the signature verification times for Mica2 in Fig-
ure 4.7. So, now we show the overall time that it takes to download and au-
thenticate a new program image on one mote from the PC and compared it
with the time that it takes for plain Deluge. To investigate and compare the
impact of dissemination code size on performance, we use six different code
image sizes, ranging from 5 to 30 pages of 1104 bytes each. These correspond
to images from 4.8 KB to 31 KB. Figure 4.13 shows our results. Note that the
time for a mote to receive a new image is subject to packet losses so we perform
the same experiment 20 times and take an average over them. For this specific
experiment we used [ = 80, k = 8, t = 65536, r = 32, and T = 32. This setting
gave a signature size of 1408 bytes and a public key size equal to 512 bytes.
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Figure 4.13: Time taken to transfer an image to a Mica2 node.

An important observation that we can make from Figure 4.13 is that the
overhead imposed on Deluge by Scatter is almost steady as the code size in-
creases. This is because for applications that are larger by p pages, the time
overhead will increase by p times the time for the sensor node to hash a page and
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compare it with the hash value included in the next page. This is insignificant
compared to the overhead due to signature transfer and verification, which is
independent on the program image size.

To compare Scatter with Seluge we run another set of experiments using
MicaZ motes. This is because Seluge’s implementation is based on CC2420 radio
component on MicaZ to reduce its overhead. It uses the hardware cryptographic
support available by that component for symmetric cryptographic operations
and it also uses the larger packet payload sizes supported by IEEE 802.15.4, the
standard implemented by CC2420. Seluge needs large packets to accommodate
its hash values, but in this way it also decreases the total number of packets
required for a given program image and therefore decreases the propagation
delay.

Figure 4.14 shows the total delay to download different program images from
the PC to a MicaZ mote, using Deluge, Scatter and Seluge. For Seluge we used
two variants, one with packet size equal to 62 bytes and one with packet of 102
bytes. For Deluge and Scatter we used the default TinyOS packet size, which
is 23. By using larger packet sizes for them also, it would only decrease the
transfer time further.
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Figure 4.14: Time taken to transfer an image to a MicaZ node.

Observing Figure 4.14, we can see the benefits from using an authentica-
tion scheme that is based only to hash operations, like Scatter, as opposed
to a scheme that uses ECC based public key operations, like Seluge. Seluge
uses TinyECC [Liu08a] on the motes, which provides an ECC implementation
for TinyOS that includes an ECDSA (Elliptic Curve Digital Signature Algo-
rithm) module. As a result, Seluge-62 introduces an average overhead of 255%
compared to the completion time of Deluge and Seluge-102 brings it down to
114%. On the other hand, for Scatter we measure an average overhead of 24%
compared to Deluge.
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Let us also note that the lower transmission times observed in Figure 4.14
regarding Deluge and Scatter, compared to the corresponding measurements
obtained for Mica2 in Figure 4.13, are due to the faster data rate of the CC2420
radio available in MicaZ. Mica2 uses the ChipCon CC1000 RF transceiver run-
ning at 38.9 kbps, while MicaZ features a much faster 250 kbps radio.

4.6.4 Updating the Public Key

After using the key pair we have produced for authenticating new program
images r times (r being for example 32 or 64), we can no longer use them,
because the security level has dropped below acceptable levels. So we need to
update them, and we use the same authentication scheme to distribute the new
public key to the motes. To send this new public key to the motes we sign it
using the current secret key, and send it to the motes just like if it was a new
image (only much smaller). We embed a small bit pattern at the beginning to
allow the motes realize that it is the new public key. In this way the motes will
verify the new public key and start using it for the next images.

For | = 80,k = 8,t = 65536,r = 32, and T" = 32 we calculated the time
needed to send a new public key in one mote in an authenticated way. The new
public key (512 bytes) fits in one page, resulting in 3 pages to be transmitted
in total (including 2 pages for the signature). Performing this experiment on
Mica2, the mote was able to receive and verify the new public key in 7.01
seconds, which is a low price to pay, given that we need to perform this operation
after r = 32 code disseminations.

4.7 Conclusions

In this chapter we presented Scatter, an efficient and practical scheme for au-
thenticated network programming in sensor networks. The solution imposes
asymmetric cryptography properties using symmetric cryptography primitives,
outperforming other proposals. It minimizes the public key and signature sizes
to values that are appropriate for sensor networks. The verification procedure
at the motes is also time and computationally efficient, since it involves only
hashing and comparison operations.

We showed how easily an implementation of such a scheme can be adapted
to an existing in-network programming protocol, namely Deluge. We tested our
secure Deluge version and measured the verification time of the signature at the
mote’s side. This verification time constitutes the main computational overhead
imposed by our scheme and is at the order of one to two hundreds milliseconds,
which is very efficient for applications running on sensor nodes.



Chapter

The Intrusion Detection Problem

5.1 Introduction

The techniques introduced by the previous chapters can effectively protect a
sensor networks against certain attacks. However, these security protocols are
based on a particular attacker assumption «. If the attacker is “weaker” than «,
the protocol will achieve its security goal, i.e., it will prevent an intruder from
breaking into a sensor network and hinder its proper operation. If the attacker
is “stronger” (i.e., behaves more maliciously) than specified by «, there is a non-
negligible probability that the adversary will break in. Because of their resource
constraints, sensor nodes usually cannot deal with very strong adversaries. So
what is needed is a second line of defense: An Intrusion Detection System
(IDS) that can detect a third party’s attempts of exploiting the insecurities of
the network, even if such attacks have not been experienced before.

Intrusion detection systems provide a necessary layer of in-depth protection
for wired networks. However, little research has been performed about intru-
sion detection in the areas of wireless sensor networks. The reason that this
kind of research has not advanced yet may be that the concept of “intrusion
detection” is not clear in the context of such networks. In this chapter therefore
we concentrate on the definition of the problem and identify scenarios in which
it can be solved, assuming one attacking node. In our opinion it is essential
to set the theoretical foundation of this new research area first, before trying
to design and implement an Intrusion Detection System (IDS) specifically for
sensor networks.

In Section 5.2, we briefly survey the existing intrusion detection techniques
from wired and ad-hoc networks and indicate important approaches that are
appropriate for wireless sensor networks. In Section 5.3, we take a more de-
tailed look into one of these approaches, namely the watchdog approach. In
Section 5.4, we outline the requirements that an IDS for sensor networks should
satisfy and in Section 5.5, we review the existing bibliography. Then, in Sec-
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tion 5.6, we define our system model and assumptions, based on which we formu-
late the problem of intrusion detection, in Section 5.7. In Section 5.8 we prove
necessary and sufficient conditions under which an IDS can successfully detect
an attacker and we describe scenarios in which cooperative intrusion detection is
unsolvable. This sets the necessary theoretical foundation for Chapter 6, where
we propose an IDS specifically designed for sensor networks. Finally, Section 5.9
concludes this chapter.

5.2 Designing an IDS for Sensor Networks

In intrusion detection, we wish to provide an automated mechanism that iden-
tifies the source of an attack and generates an alarm to notify the network or
the administrator, so that appropriate preventive actions can take place. As an
attack we consider any set of actions that target the computing or networking
resources of our system. Attackers may be using an external system without
authorization or have legitimate access to our system but are abusing their priv-
ileges (i.e., an insider attack). It is important to realize here that the IDS comes
into the picture after an intrusion attempt has occurred. It does not try to
prevent these attempts in the first place.

5.2.1 Intrusion Detection Techniques

In order to detect an intruder, we need to use a model of intrusion detection. We
need to know what an IDS should look out for. In particular, an IDS must be
able to distinguish between normal and abnormal activities in order to discover
malicious attempts in time. However this can be difficult, since many behavior
patterns can be unpredictable and unclear. There are three main techniques
that an intrusion detection system can use to classify actions [Axe00]:

o Misuse detection. In misuse detection or signature-based detection sys-
tems [I1g95; Lin99], the observed behavior is compared with known attack
patterns (signatures). So, action patterns that may pose a security threat
must be defined and given to the system. The misuse detection system
tries to recognize any “bad” behavior according to these patterns. Any
action that is not clearly prohibited is allowed. The main disadvantage
of such systems is that they cannot detect novel attacks. Someone must
continuously update the attack signature database. Another difficulty is
that signatures must be written in a way to encompass all possible varia-
tions of the pertinent attack, and yet avoid flagging non-intrusive activity
as an intrusive one.

o Anomaly detection. Anomaly detection [Jav94] overcomes the limitations
of misuse detection by focusing on normal behaviors, rather than attack
behaviors. This technique first describes what constitutes a “normal” be-
havior (usually established by automated training) and then flags as intru-
sion attempts any activities varying from this behavior by a statistically
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significant amount. In this way there is a considerable possibility to detect
novel attacks as intrusions. There are two problems associated with this
approach: First, a system can exhibit legitimate but previously unseen
behavior. This would lead to a substantial false alarm rate, where anom-
alous activities that are not intrusive are flagged as intrusive. Second, and
even worse, an intrusion that does not exhibit anomalous behavior may
not be detected, resulting in false negatives.

o Specification-based detection. Specification-based detection [Ko01; Ko97]
tries to combine the strengths of misuse and anomaly detection. It is based
on deviations from normal behavior. However, in this case, the normal
behavior is not defined by machine learning techniques and training. It is
based on manually defined specifications that describe what is a correct
operation and monitors any behavior with respect to these constraints.
In this way, legitimate but previously unseen behaviors will not cause a
high false alarm rate, as in the anomaly detection approach. Also, since
it is based on deviations from legitimate behaviors, it can still detect pre-
viously unknown attacks. On the other side, the development of detailed
specifications by humans can be time-consuming and bare the inherent
risk that certain attacks may pass undetected.

Caution must be taken when applying the anomaly detection technique in
sensor networks. It is not easy to define what is a “normal behavior” in such
networks, as they usually adapt to variations in their environment or according
to other parameters, such as the remaining battery level. So, these legitimate
changes of behavior may easily be mistaken from the IDS as intrusion attempts.
Moreover, sensor networks cannot bear the overhead of automatic training, due
to their low energy resources. Specification-based detection seems the most
appropriate approach in this case, if one can design appropriate rules that cover
as broad range of attacks as possible.

5.2.2 Intrusion Detection Architectures

Traditionally, intrusion detection systems for fixed networks were divided into
two categories: host-based and network-based. The host-based architecture was
the first architecture to be explored in intrusion detection. A host-based intru-
sion detection system (HIDS) is designed to monitor, detect, and respond to
system activity and attacks on a given host (node). Any decision made is based
on information collected at that host by reviewing audit logs for suspicious ac-
tivity. This contradicts the distributed nature of sensor networks and makes it
impossible to detect network attacks. A network-based architecture is clearly
more appropriate here.

Network-based intrusion detection systems (NIDS) use raw network packets
as the data source. A network-based IDS typically listens on the network, and
captures and examines individual packets in real time. It can analyze the entire
packet, not just the header. In wired networks, active scanning of packets from
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a network-based intrusion detection system is usually done at specific traffic
concentration points, such as switches, routers or gateways. On the other hand,
wireless sensor networks do not have such “bottlenecks”. Any node can act as
a router and traffic is usually distributed for load balancing purposes. So, it is
impossible to monitor the traffic at certain points.

So, when designing an IDS for sensor networks, we must be careful of where
to locate the detection agents, due to the distributed nature of the network and
traffic routed within. One possible solution is to have an identical agent inside
every node. That would be a realistic solution, if the agents were designed to
be lightweight and cooperative through a distributed algorithm. Another solu-
tion would be to have a hierarchical model, where some more computationally
intensive agents were placed on certain nodes, while other agents with restric-
tive tasks were placed on the rest of the nodes. We review systems using both
solutions in Section 5.5.

5.2.3 Decision Making Techniques

Intrusion detection systems can be further classified according to the decision
making techniques that they use in order to detect and initiate a response
to an intrusion attempt. This decision can be made either collaboratively or
independently by the nodes.

Since the nature of sensor networks is distributed and most of the services
provided require cooperation of other nodes, it is only natural that intrusion
detection should also be done in a cooperative manner. In this case, every node
participates in intrusion detection and response by having an IDS client installed
on them. Each node is responsible for detecting attempts of intrusion locally.
If an anomaly is detected by a node with weak evidence, or if the evidence is
inconclusive, then a cooperative mechanism is initiated with the neighboring
nodes in order to take a global intrusion detection action. Such a mechanism
is described by Zhang et al. [Zha03] for ad-hoc networks, where nodes use a
majority-based distributed intrusion detection procedure. More sophisticated
cooperative decision-making schemes may use mobile agents [Alb02; Kac03] or
fuzzy logic [Sir01] to better support the decision process.

When designing a cooperative decision making mechanism for intrusion de-
tection in sensor networks, one should consider the fact that a node can be
compromised and hence, send falsified data to its neighbors trying to affect the
decision. So, one must be skeptical as to which nodes to trust. The fact that
it is difficult for an adversary to compromise the majority of the nodes in a
specific neighborhood can play an important role here. Moreover, a cooperative
mechanism has to consider the bandwidth and energy resources of the nodes.
The nodes cannot exchange security data and intrusion alerts without consider-
ing the energy that has to be spent for sending, receiving and processing these
messages.

In an independent decision-making system, there are certain nodes that have
the task to perform the decision-making functionality. They collect intrusion
and anomalous activity evidences from other nodes and based on them they
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Figure 5.1: Node B is selectively forwarding packets to node C'. Node A promiscu-
ously listens to node B’s transmissions.

can make decision about network-level intrusions. The rest of the nodes do not
participate in this decision. In such architectures, the decision-making nodes
can attract the interest of an attacker, since their elimination would leave the
network undefended. Furthermore, the information that they process is limited,
since it originates from specific nodes. Another disadvantage of such approaches
is that they restrict computation-intensive analysis of overall network security
state to a few key nodes. Their special mission of processing the information
from other nodes and deciding on intrusion attempts results in an extra process-
ing overhead, which may quickly lead to their energy exhaustion, unless different
nodes are dynamically elected periodically.

5.3 The Watchdog Approach

As we saw in Section 5.2.2, in order to apply a network-based intrusion detection
system in sensor networks, packet monitoring should take place in several nodes
of the network, due to its distributed nature. In this section we look in more
detail at a technique that can be used for packet monitoring, called the watchdog
approach [Mar00].

The watchdog approach relies on the broadcast nature of the wireless com-
munications and the fact that sensors are usually densely deployed. Each packet
transmitted in the network is not only received by the sender and the receiver,
but also from a set of neighboring nodes within the sender’s radio range. Nor-
mally these nodes would discard the packet, since they are not the intended
receivers, but for intrusion detection this can be used as a valuable audit source.
Hence, a node can activate its IDS agent and monitor the packets sent by its
neighbors, by overhearing them. However, this is not always adequate to draw
safe conclusions on the behavior of the monitored node.

There are certain concerns that arise in this case which will be highlighted
by way of an example. In the setting shown in Figure 5.1, suppose that a packet
should follow the path A — B — C' — D. Now, suppose that C' is compromised
and exhibits a malicious behavior, selectively dropping packets. There are three
cases, arising from the wireless nature of communications, where having a node
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Figure 5.2: Nodes A, C, D and E can be watchdogs of the link A — B.

B monitoring node C' cannot result in a successful detection of node C:

1. Node C forwards its packet and node A sends a packet to B at the same
time. Then a collision occurs at B. Node B cannot be certain which
packets caused this collision, so it cannot conclude on C’s behavior.

2. Node C forwards its packet to node D at the same time that node E makes
a transmission. Then a collision occurs at D, which cannot be detected
by B. Node B thinks that C' has successfully forwarded its packet and
therefore, C' can skip retransmitting the packet, without being detected.

3. Node C forwards its packet to node D at the same time that D makes a
transmission. Then a collision occurs at D. Again, node B thinks that C
has successfully forwarded its packet, even though it never reached node
D.

From the above cases we can conclude that only one watchdog is not always
enough to detect an attack, so this approach should involve information from
more nodes. Then these nodes could cooperate and exchange their partial views
in order to draw their final conclusions. In Chapter 6, we will describe an IDS
based on this observation.

Furthermore, to detect certain attacks, it’s not enough to monitor just one
node, but rather a link, meaning the packets transmitted by the nodes at both
of its ends. For example, to detect selective forwarding, a watchdog should be
able to overhear packets arriving at a node and transmitted by that node. So,
if we want to see whether a node B forwards packets sent by node A, we must
activate a watchdog that resides within the intersection of A’s and B’s radio
range. For example, in Figure 5.2, the nodes A, C, D and E can be watchdogs
for the communication between A and B.

Finally, one could argue that the watchdog approach increases the energy
consumption of the nodes, since they have to overhear packets not destined
for them. However, let us note that in most radio stacks of today’s sensor
platforms each node receives packets sent by neighboring nodes anyway. They
cannot know if a packet is addressed to them unless they receive it and check
the destination field. So, the only overhead imposed to the nodes is any further
processing of the packet.
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5.4 Requirements of IDS for WSN

In order to elaborate on the requirements that an IDS system for sensor networks
should satisfy, one has to look at the specific characteristics of these networks.
Each sensor node has limited communication and computational resources and
a short radio range. Furthermore, each node is a weak unit that can be easily
compromised by an adversary [Bec06], who can then load malicious software to
launch an insider attack.

In this context and taking under consideration the discussion in Section 5.2,
a distributed architecture, based on node cooperation is a desirable solution. In
particular, we require that an IDS for sensor networks must satisfy the following
properties:

1. Localize auditing. An IDS for sensor networks must work with localized
and partial audit data. In such networks there are no centralized points
(apart from the base station) that can collect audit data for the entire
network, so this approach fits the sensor networks paradigm. Dealing
with partial data means that the IDS should also address the problem of
high false alarm rate.

2. Minimize resources. An IDS for sensor networks should utilize a small
amount of resources. The wireless network does not have stable connec-
tions, and physical resources of network and devices, such as bandwidth
and power, are limited. Disconnection can happen at any time. In addi-
tion, the communication between nodes for intrusion detection purposes
should not take too much of the available bandwidth.

3. Trust no single node. In a collaborative IDS, the nodes cannot assume
that other participant nodes can be trusted. Unlike wired networks, sensor
nodes can be easily compromised. These nodes may behave normally with
respect to the routing of the information in order to avoid being detected
by the IDS. However, they can expose a malicious behavior to obstruct the
successful detection of another intruder node. Therefore, in cooperative
algorithms, the IDS must assume that no single node can be fully trusted.

4. Be truly distributed. The process of data collection and analysis should be
performed on a number of locations, in order to distribute the load of the
intrusion detection. The distributed approach also applies to execution of
the detection algorithm and alert correlation.

5. Support addition of new nodes. In practice it is likely that a sensor network
will be populated with more nodes after its deployment. An IDS should
be able to support this operation and distinguish it from an attack (e.g.
wormhole attack) that has the same effect.

6. Be secure. An IDS should be able to withstand a hostile attack against it-
self. Compromising a monitoring node and controlling the behavior of the
embedded IDS agent should not enable an adversary to revoke a legitimate
node from the network, or keep another intruder node undetected.
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5.5 Existing Approaches

Several proposed architectures of intrusion detection systems already exist for
Ad Hoc networks. The first scheme to be proposed was introduced by Zhang
et al. [Zha03], which is a distributed and cooperative IDS model, where every
node in the network participates in the detection process. Another architecture,
called LIDS [A1b02] utilizes mobile agents on each of the nodes. These agents are
used to collect and process data on remote hosts and transfer the results back
to their home nodes, or migrate to another node for further investigation. Also
based on mobile agents is the IDS proposed by Kachirski and Guha [Kac02]. The
agents are categorized as monitoring, decision-making and action agents. All
nodes accommodate host-based monitoring agents but only a few nodes chosen
by a distributed algorithm host agents with network monitoring and decision
capabilities.

These IDS architectures for Ad Hoc networks cannot be applied directly to
sensor networks. The differences in the nature of the two kinds of networks
impose different requirements, which forces us to design new solutions. A first
attempt to apply anomaly detection in sensor networks is presented by da Silva
et al. [Sil05]. According to the author’s proposed algorithm, there are some
monitor nodes in the network, which are responsible for monitoring their neigh-
bors looking for intruders. These nodes listen to messages in their radio range
and store certain message fields that might be useful to the rule application
phase. The rules concern simple observations, such as:

e the message sending rate must be within some limits,
e the payload of a forwarded message should not be altered,
e the retransmission of a message must occur before a defined timeout, and

e the same message can only be retransmitted a limited number of times.

Then they try to detect some attacks, like message delay, repetition, data
alteration, blackhole and selective forwarding. It is concluded from the paper
that the buffer size to store the monitored messages is an important factor that
greatly affects the false positives number. Given the restricted memory available
in motes, it turns out that the detection effectiveness is kept to lower levels.

A similar approach is followed by Onat and Miri [Ona05], where each node
has a fixed-size buffer to store the packets received from neighbors and their
corresponding arrival time and received power. If its power is not within certain
limits, the packet is characterized anomalous. An intrusion alert is raised if the
rate at which anomalous packets are detected over the overall rate at which
packets are received is above a given threshold. In this way the authors claim
that it is possible for a node to effectively identify an intruder impersonating a
legitimate neighbor.

Loo et al. [Loo05] and Bhuse and Gupta [Bhu06] describe two more IDSs,
emphasizing on routing attacks in sensor networks. Both papers assume that
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routing protocols for ad hoc networks can also be applied to WSNs: Loo et
al. [Loo05] assume the AODV (Ad hoc On-Demand Distance Vector) protocol
while Bhuse and Gupta [Bhu06] use the DSDV and DSR protocols. Then,
specific characteristics of these protocols are used like “number of route requests
received” to detect intruders. However, to the best of our knowledge, these
routing protocols are not attractive for sensor networks and they have not been
applied to any implementation that we are aware of.

Roman et al. [Rom06] propose an IDS architecture where all nodes are loaded
with an IDS agent. This agent is divided into two parts: local agents and global
agents. Local agents are active in every node and are responsible for monitoring
and analyzing only local sources of information. Global agents are active at
only a subset of nodes. They are in charge of analyzing packets flowing in their
immediate neighborhood. In order for the whole communication in the network
to be covered by global agents, the global agents must be activated at the right
nodes. For example, if clusters are used, the global agents will be activated at
the cluster-heads. In case of a flat architecture, the authors propose another
solution (called spontaneous watchdogs) that tries to activate only one global
agent for a packet circulating in the network.

A completely different approach is presented by Anjum et al. [Anj04], where
the authors assume signature-based intrusion detection. This is the only work
that takes a position against promiscuous monitoring and argues that detection
should be based only on the analysis of packets that pass through a node. The
problem then is to determine at which nodes should the IDS modules be placed,
such that all the packets are inspected at least once. The proposed solution
is based on the concepts of dominating set and minimum cut set and on the
requirement that the nodes running the IDS module should be tamper resistant.

5.6 System Model

5.6.1 Sensor Nodes and Communication

We present a strong system model used for proofs of necessary and sufficient
conditions for intrusion detection in the sequel. It is useful, because if some
problem is impossible to solve in our model, it is also impossible to solve in
weaker models which are closer to the reality.

In our model, a wireless sensor network consists of a set S = {s1,8s,...,8n}
of n sensor nodes. Sensors communicate by sending messages over a wireless
broadcast medium, meaning that if some sensor s sends a message, many other
sensors can receive the message simultaneously. We assume that communication
is instantaneous and that possible collisions on the wireless medium can only
delay the receipt of a message for a relatively short time.

For any sensor node s, the set of nodes with which it can directly commu-
nicate is denoted by N(s). For simplicity, we assume a static and symmetric
neighborhood relation, i.e., if s € N(s’) then s’ € N(s). We assume that every
node knows its 2-hop-neighborhood.
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Although the above assumptions are strong, considering the unreliable asym-
metric wireless links and frequent neighborhood changes in real sensor networks,
we use them especially for the proofs presented in this chapter. In Chapter 6
we discuss how the system model can be weakened, and how these changes will
affect our proofs and protocols. We then present an IDS for realistic sensor
networks, which does not make these strong assumptions.

We make no assumptions about the communication topology defined by
all neighborhood sets apart from that all nodes that behave according to the
protocol (honest nodes, see below) are connected via a path consisting only of
the honest nodes. We expect that in typical sensor networks the density of the
nodes is rather high so that this condition will be satisfied with high probability.

We assume a synchronous system model, i.e., sensor nodes are able to mea-
sure time reliably using e.g., hardware clocks that run within a linear envelope
of real time. Time synchronization in sensor networks received close attention
in the last years, efficient protocols for secure time synchronization were devel-
oped [Gan05; Sun06], such that this assumption seems reasonable.

5.6.2 Attacker Model

We assume that an attacker can capture at most ¢ nodes to launch an attack
on the sensor network. We model this by allowing at most ¢ nodes to behave in
an arbitrary manner (Byzantine failure [Gar03]). However, we do not propose
a Byzantine Agreement protocol, but focus on the Intrusion Detection Prob-
lem (Section 5.7). The relationship between Intrusion Detection and Byzantine
Agreement is discussed later in Section 5.8.3.

The predicate faulty(s) on S is true if and only if (iff) s is captured by the
attacker. We define honest(s) = —faulty(s).

The attacker can follow the protocol for a certain period of time and therefore
behave in a way which cannot be detected. However, at some point in time the
attacker must deviate from the protocol in some faulty node to launch an attack.
At this point in time, we say that the attacker attacks.

In this chapter, we concentrate on the case where t = 1, as it is already
rather complex. In this case, we call the faulty node the source of the attack, or
the attacker, and use the predicate source(s) which is true iff s is the attacker.

5.6.3 Alert Module

In intrusion detection, we wish to identify the attacker. Attacks are locally de-
tected by a local intrusion detection mechanism. We abstract such mechanisms
of a sensor node into an alert module.

Whenever the alert module at node s notices something wrong in its neigh-
borhood, the alert module simply outputs some set D(s) of suspected sensors,
called the suspected set. The size of D(s) depends on the quality of the alert
module. If |D(s)| = 1, then the sensor has identified the attacker. Most often
however, D(s) will contain a larger set of neighbors or may even be equal to
N(s).
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For example, in the detection of the selective forwarding attack [Kro07b], the
nodes are able to identify the one node that drops the messages by monitoring
the transmissions in their neighborhood. In this case we have that |D(s)| = 1.
In another example, the protocol for detecting the sinkhole attack [Kro07c],
nodes do not have a clue of who the attacker might be, except that it has to be
one of their neighbors. Therefore, D(s) = N(s) in this case.

Formally, the alert module satisfies the following properties:

o If the alert module at a honest node s outputs D(s), then the source is in
that set, i.e., 35’ € D(s) : source(s’).

e If the attacker attacks, then within some time delay § the alert module at
some sensor s outputs a set D(s).

e Only neighbors are suspected by honest nodes, i.e., Vs € S : honest(s) =
D(s) C N(s).

If the alert module at some node s outputs some set, we call s an alerted
node. The predicate A on S denotes the set of alerted nodes, i.e., A(s) holds
iff s is an alerted node. The set of alerted nodes is called the alerted set. Note
that faulty nodes may or may not belong to the alerted set, depending on the
strategy that the attacker chooses to follow.

Not all neighbors of the attacker necessarily belong to the alerted set. For
example, for the detection of selective forwarding only the alert module of the
common neighbors of nodes s and s is triggered [Kro07b]. This is because only
these nodes can hear both the transmissions of node A and node B. However,
for the Sinkhole attack, the alerted set includes all neighbors [Kro07c].

5.7 The Intrusion Detection Problem

Intrusion detection not only means to detect that some node has been attacked,
it also includes identifying the source of an attack. In our case, the cooperative
intrusion detection process is triggered by an attack and the subsequent alerts
by the local alert modules of the neighboring sensors. The process ends by
having the participating sensors jointly expose the source.

More formally, the predicate expose,(s’) is true if node s exposes node s'.
The intrusion detection problem can now be defined as follows:

Definition (Intrusion Detection Problem (IDP)). Find an algorithm that sat-
isfies the following properties:

e If an honest node s exposes a node s', then s is in the alerted set and s’
is the source, i.e., Vs € S : honest(s) A exposey(s’) = A(s) A source(s’).

o [f the attacker attacks, then at most after some time T all honest nodes in
the alerted set expose some node.
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Note that both parts of the IDP definition are necessary. The first prop-
erty refers to the aspect of partial correctness: If the algorithm does something,
then it satisfies some input/output relation. It basically restricts the behavior of
honest nodes to output something meaningful (if they output anything). Disre-
garding the first property would allow implementations that output information
which is not useful.

The second property refers to the aspect of termination: The algorithm
actually has to do something. Disregarding the second property would allow
implementations that output nothing. Separating the two properties therefore
separates concerns and makes reasoning about the problem simpler.

5.8 Conditions for Solving Intrusion Detection

The idea of cooperative intrusion detection is to exchange the outputs of local
alert modules, thereby narrowing down the set of possible nodes that could be
the attacker. In the following we assume that nodes have no other way to learn
anything about the attacker than using their alert modules.

As an initial example, consider the case depicted in Figure 5.3(a). Node
p suspects the source ¢, i.e., D(p) = {q}. Being Byzantine, ¢ can claim to
output D(q) = {p}. Since p implicitly knows that it is honest, it will ignore the
information provided by ¢ and expose ¢, solving IDP.

T D(T):{p;q}
D(q)={p}
q
D(q)={p,r}
5 q
D(p)={q} p D(p)={qr}
(a) (b)

Figure 5.3: Different types of alerted neighborhoods. Sources of attacks are marked
black. In case (a) the IDP is solvable, while in case (b) the IDP is not solvable.

Now consider a slightly updated example (see Figure 5.3(b)). There three
nodes p, ¢, and r all suspect each other (node ¢ is the source). Every node
occurs in exactly two suspect sets, p cannot distinguish node r from node g, if
it only may use the suspect sets. We conclude that it is impossible to solve IDP
in this case.

Generalizing these two examples, the question arises about general condi-
tions for the solvability of the intrusion detection problem (IDP). In general,
two types of conditions are interesting: Necessary conditions and sufficient con-
ditions. A condition is sufficient for IDP iff the truth of the condition implies
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that there exists an algorithm solving the IDP. A condition is necessary iff the
existence of an algorithm to solve IDP implies that the condition is true.

In the following, we give necessary (Section 5.8.2) and sufficient (Section 5.8.1)
conditions for solvability of IDP using a deterministic algorithm for t = 1 in our
system model. We show the relationship between IDP and Byzantine Agreement
in Section 5.8.3.

5.8.1 Sufficient Conditions for Solving IDP
The Intrusion Detection Condition (IDC)

We now give a sufficient condition for IDP solvability for ¢ = 1 and determin-
istic algorithms. The intuition behind the condition is a generalization of the
observation made in Figure 5.3(b): If the suspect sets about some node s are
structurally equivalent to those of the source, then the problem is in general not
solvable.

Formally, for a node s we define the set AN(s) to be the set of alerted
neighbors of s, i.e.:

AN (s) ={t|A(t) Nt € N(s)}

Furthermore, we define the set of alerted neighbors of p with respect to ¢
AN (p,q) to be the set of alerted neighbors of p without g, i.e.:

AN (p,q) = AN(p) \ {q}

As an example, consider Figure 5.3(b). Here, all three nodes are in alert mode
and AN (s) = D(s). The value of AN (b, a) is the information content of AN (b)
that is valuable to a. Since a itself knows that it is honest, it will exclude itself
from the set AN (b), yielding AN (b, a) = {c}.

Definition (Intrusion Detection Condition (IDC)). The intrusion detection
condition (IDC) is defined as:

Vp,q € S : source(q) = A~N(p7 q) # A~N(q,p)

Roughly speaking, IDC means that no other node has the same alerted
neighborhood as the attacker. If p and ¢ are neighbors, both are in each other’s
neighborhood and so they are always different. To exclude this case, we defined
AN. Note that if p and ¢ are not neighbors, then IDC simplifies to:

Vp,q € S : source(q) = AN (p) # AN(q)

Theorem 1 (Sufficiency of IDC). Ift =1, IDC is sufficient for ID, i.e., if IDC
holds then IDP can be solved.

Proof. Let all alerted nodes exchange their suspected sets. This is possible in
our system model because each pair of honest nodes is connected by a path
consisting of honest nodes, and communication is reliable.
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Note that the attacker can also go into alert mode. Moreover, it can send
different suspected sets to different nodes. However, as we assume that all nodes
know their 2-hop-neighborhood, the suspected set of the attacker may only
contain its neighbors. Otherwise, the attacker’s messages would be discarded.

Consider the suspected sets received by an honest node p. As the attacker is
included in the suspected set of every honest node, and no honest node has the
same alerted neighborhood as the attacker, no honest node can be suspected by
more nodes than the attacker. Thus, if some node is suspected by more nodes
than all other nodes, this node can be immediately identified as the attacker.

A more complicated case arises when there are two or more nodes which are
suspected by the same number of nodes. This situation can arise, e.g., if the
attacker also goes into the alert mode and accuses some of its neighbors.

We denote the attacker as q. Assume that there is a node p # ¢ which is
suspected by the same number of nodes as q. How can a node r distinguish
between ¢ and 77?7

(1) If p = r, then r knows that it is honest, and exposes gq.

(2) Consider p # r. If all honest nodes suspect p, then the IDC does not
hold. Thus, for some honest node s holds: p ¢ D(s) and ¢ € D(s). It follows
that ¢ is alerted and p € D(q), as the number of nodes which suspect p is the
same as the number of nodes which suspect q.

Node r» must now decide which of nodes s and ¢ lies about their suspicion.
We now show that there is an alerted node v which is not neighbor of s. Indeed,
if all alerted nodes were neighbors of s, than s and ¢ would have the same alerted
neighborhood with respect to each other, which contradicts the IDC. Thus, node
r has to find out which of the nodes s and ¢ is not a neighbor of some alerted
node. This is possible as all nodes know their 2-hop neighborhood. This node
has to be honest, and the remaining node is identified as the attacker. O

As an example, consider Figure 5.4. Nodes s and r are honest nodes and
alerted. Node p is also honest, but not alerted. The attacker is node ¢, which is
alerted. In this example, nodes p and ¢ are both suspected by two nodes. How
can node r distinguish the attacker?

O———»
§ q

O
P

Figure 5.4: Node q is the attacker, nodes s, r and q are alerted, while p is not alerted
and it is marked white. * — y means that node x suspects node y. D(r) = {q,p},
D(q) = {p,r, s}, and D(s) = {q}.

IDC holds here:
o AN(p,q) =0, AN(q,p) = {s}
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e AN(r,q) = {p}, AN(q,7) = {p,s}
o AN(s,q) =0, AN(q,s) = {p}

Nevertheless, node p collects two suspicions for each of ¢ and r. Thus, either
q or s is lying about their suspicions. However, nodes r and s are not neighbors,
and therefore, s cannot be the attacker. (In this example, the node v from the
proof is equal to 7.)

The Neighborhood Conditions (NC)

What happens if IDC is not satisfied? Can IDP still be solved, or is IDC also a
necessary condition for solving IDP?

In the following we show that IDC is not a necessary condition. We give an-
other sufficient conditions for IDP solvability which can be valid in the network
independently of the validity of the IDC.

Definition (Neighborhood Conditions). The Neighborhood Conditions (NC)
consist of two conditions:

e NCjy. All neighbors of the attacker are alerted.

e NCs. If two or more nodes are suspected by the majority of nodes, then
all honest nodes suspected by the majority have non-alerted neighbors.

Theorem 2 (Sufficiency of NC). If the NC holds, i.e., NC; and NC5 hold,
then the IDP can be solved.

Proof. We give an informal reasoning here. The details of the algorithm for this
case are given in Section 6.4.5.

Let all alerted nodes exchange their suspected sets. If only one node is sus-
pected by the majority of nodes, then this node is the attacker, as all neighbors
of the attacker are alerted (NCi). If there are two or more nodes which are
suspected by the majority, the nodes in the alerted set have to find out which of
these nodes have non-alerted neighbors. According to NC5, only the attacker
does not have non-alerted neighbors. O

5.8.2 Necessary and Sufficient Conditions for Solving IDP

We now show that for the solvability of IDP either the IDC or the NC (i.e., NC;
and NC;) should be satisfied in the sensor network.

Theorem 3. IDP can be solved using a deterministic algorithm if and only if
the IDC or NC' holds.

Proof. As shown in Theorems 1 and 2, if IDC holds or if NC holds, then the
intrusion detection problem can be solved. We now show that the IDC or the
NC is necessary for the solvability of the IDP. It suffices to show the following:
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D p
T T

(2) (b)

Figure 5.5: Case (a): Node p suspects q and r, node q suspects p and r, node r is
the attacker and suspects q. IDC and NCs are not satisfied. Case (b): The suspicions
remain as in case (a), but node q is the attacker. No algorithm for solving the IDP
can distinguish between (a) and (b). Therefore, it is impossible to expose the attacker.

if the IDC does not hold and the NC does not hold, then the IDP cannot be
solved.

Assume that the above claim is not true. That is, there exists a determinis-
tic algorithm A that always exposes the attacker in case both the IDC and the
NC do not hold. Consider Figure 5.5(a). The IDC does not hold there because
AN(p,r) = AN(r,p) = {q}. Also NC does not hold, because NC; does not
hold: The attacker r and the honest node ¢ are suspected by two nodes, but ¢
does not have any non-alerted neighbors. In this case, the algorithm A should
expose r. However, the situation in Figure 5.5(b) is exactly the same as in (a)
from A’s point of view. The suspicions remain the same, the topology also does
not change. Thus, there is no additional information to help A4 to distinguish
between situations (a) and (b). However, A should be able to distinguish be-
tween (a) and (b) and to expose r or ¢ accordingly. It follows that A does not
exist. O

5.8.3 Byzantine Agreement vs. Intrusion Detection

In IDP, the honest nodes have to jointly expose the attacker. That is, they have
to reach agreement on the attacker’s identity. At first glance, this looks similar
to Byzantine Agreement [Pea80], where the nodes have to reach agreement on
their inputs. Nevertheless, we show that these two problems cannot be reduced
to each other. In some cases, Byzantine Agreement can be solved, whereas
Intrusion Detection is not solvable. On the other hand, sometimes Intrusion
Detection is solvable, whereas Byzantine Agreement is not.

Consider Figure 5.6(a). Here, the three nodes p, ¢ and r are connected, g
is the attacker. It participates in the protocol and suspects both p and r. The
honest nodes, on the other hand, both suspect ¢. In this case, Intrusion Detec-
tion is trivially solvable. However, Byzantine Agreement for three participants
with ¢ = 1 cannot be solved [Pea80].

In Figure 5.6(b), all nodes suspect each other. IDC does not hold, as nodes
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Figure 5.6: Byzantine Agreement and Intrusion Detection cannot be reduced to each
other. Case (a): Honest nodes p and r both suspect only the attacker q, thus Intrusion
Detection can be solved, but Byzantine Agreement is not solvable. Case (b): Intrusion
detection cannot be solved, Byzantine Agreement is solvable.

s and ¢ have the same alerted neighborhood with respect to each other. NC
also does not hold, as no node has non-alerted neighbors. Thus, Intrusion
Detection is not solvable. However, Byzantine Agreement for ¢ = 1 can be
solved here [Pea80].

5.9 Conclusions

In this chapter we argued that an IDS for sensor networks should locate its
detection agents inside all nodes. This will provide partial views of the attack,
which can be combined through a cooperative mechanism and provide the nodes
with strong evidence of the attack. We then made a first attempt to formalize
the problem of intrusion detection in sensor networks, and showed the benefits
and theoretical limitations of the cooperative approach to intrusion detection.
We presented necessary and sufficient conditions for successfully exposing the
attacker under a general threat model. For the needs of the proofs, we used
a strict theoretical model, which can be weakened to reflect the conditions in
realistic sensor networks. We discuss how to do this in the following chapter.






Chapter

A Cooperative Intrusion Detection
Algorithm

6.1 Introduction

In the previous chapter we generalized the problem of intrusion detection for
sensor networks and defined an abstract framework under which we were able
to prove necessary and sufficient conditions for the successful detection of the
attacker, assuming that there is only one such node (¢t = 1). As we saw, if
there is no other node that has the same alerted neighborhood as the attacker
(IDC), then we can detect the attacking node. If this condition does not hold,
we can still detect it: it is sufficient that all neighbors of the attacker are alerted
and that any honest node that is equally suspected with the attacker has non-
alerted neighbors (NC). More interestingly, we showed that if none the above
conditions hold, then there is no algorithm to detect the attacker. But if a
condition does hold, it remains to define specific algorithms for the detection.
This is the subject of this chapter. We present an intrusion detection algorithm,
which is based on the cooperation of the honest nodes and reveals the attacker.

The algorithm is implemented by an IDS agent installed in all sensor nodes.
The agent runs independently from the application and monitors communication
activity within the radio range of the host node. When an attack is launched,
the corresponding agents dynamically become activated around the attacking
node and collaborate with each other in order to share their partial views, agree
on the identity of the source and expose it. As a result, the nodes collectively
form an IDS system to defend the sensor network.

The general functionality of the IDS agent can be described as follows:

e Network Monitoring: Every agent performs packet monitoring in their
immediate neighborhood collecting audit data.

e Decision Making: Using this audit data, every agent decides on the intru-

89
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sion threat level on a host-based basis. Then they publish their findings
to their neighbors and make the final collective decision.

e Action: Every agent has a response mechanism that allow it to respond
to an intrusion situation.

The communication amongst the clients allows us to use a distributed al-
gorithm and show that with collaborative processing an IDS can become light-
weight enough to be realistic for sensor networks.

The rest of the chapter is organized as follows. In Section 6.2, we define our
system model and discuss how it is related to the model we defined in Chap-
ter 5. In Section 6.3 we state our threat model and in Section 6.4 we describe
our algorithm in detail, sectioned in phases. Then, Section 6.5 presents a system
perspective of the IDS, describes its modules and how they are interconnected.
Section 6.6 elaborates on the probability that our IDC and NC conditions hold
in practice, through simulation results. Finally in Section 6.7, we present ex-
perimental results of the IDS implementation on the motes and investigate its
performance in real scenarios. Section 6.8 concludes this chapter.

6.2 System Model

For the proofs in Chapter 5 we required reliable and timely communication as
part of our assumptions. In principle, we can also use weaker system models as
long as they allow some protocols for reliable and timely exchange of suspected
sets with high probability. For example, in this chapter we use an advertise-
request protocol to guarantee this. So, our system model can be weakened and
consider unreliable links and unpredictable delays for the wireless communica-
tion. When a node transmits a packet, it does not know which nodes successfully
received the message, since the MAC layer of the receivers does not send any
acknowledgments or requests for retransmissions. A node may miss to receive
a message, either because a collision occurs or because its radio is not available
at the time of the transmission.

In the previous chapter, we also assumed a static and symmetric neighbor-
hood relation. This assumption can also be weakened. All we need is that the
nodes have secure information on their 2-hop neighborhood which do not change
during a particular protocol run. In this chapter, we let the nodes find out their
neighborhood in the secure initialization phase, where the attacker is absent.
The neighborhood tables which are used for intrusion detection are then fixed.
In case that a neighbor crashes, it looks in the protocol as if the node was not
alerted. This can be tolerated as long as the IDC holds (the NC does not hold
in this case). On the other hand, if some new neighbors arrive, there must be
a secure protocol for their addition and the update of the neighborhood tables,
but we have left this as a future work. So, for this chapter we do not support
new nodes addition.



6.4 THREAT MODEL 91

6.3 Threat Model

We follow the same threat model as in the previous chapter, where the attacker
can capture a number of ¢ nodes to launch an attack and we distinguish among
these ¢t nodes one single node which is the source of the attack, i.e., this node
is the first to behave in a faulty way. All non-source faulty nodes are called
collaborators. We assume that collaborators are neighbors of the source of an
attack. Thus an attacker can have ¢ — 1 collaborators. To be consistent with
Chapter 5, we will assume that ¢ = 1. In this way the necessary and sufficient
conditions will be valid, and the algorithm presented here is nicely connected
with the theorems presented in the previous chapter.

6.4 The Algorithm

We partition our algorithm into the following phases: The initialization phase,
where nodes construct and share some secret values, the voting phase, where
nodes exchange their lists of suspected nodes and the key verification phase,
where nodes publish their keys and verify the authenticity of the signed votes.
Then, if IDC holds, as shown in Figure 6.1, we can move to the final phase of
exposing the attacker. If it does not hold, but NC holds, we add one extra phase,
the external ring reinforcement phase. In the following sections we describe each
phase in detail.

Initialization

l

Voting

l

Publish Key

mc/ \i\m

Expose External Ring
Attacker Reinforcement

l

Expose Attacker

Figure 6.1: The phases of the IDS algorithm. If IDC does not hold, but NC holds,
we add one extra phase, the external ring reinforcement.
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6.4.1 Initialization Phase

The initialization phase takes place right after the network deployment. The
duration of this phase is short enough so that we can safely assume the ab-
sence of an attacker in the network’s vicinity. We also require that all nodes
have discovered their immediate neighbors, which is a standard procedure after
deployment in almost all routing protocols.

During this phase all nodes discover their 2-hop neighborhood by broadcast-
ing their IDs with a packet that has a TTL field equal to 2, meaning that each
packet will be forwarded only once by the sender’s 1-hop neighbors. The dis-
covered neighborhood information is stored in a table, which we call the 2-hops
neighborhood table.

Next, each node generates a one-way key chain of length n,

(Ko, K1y, Kn—1, Kp),

using a pre-assigned unique secret key K,, and a one-way hash function F. As
the last step in the initialization phase, each node announces the resulted has
chain commitment K to all of its 1-hop and 2-hop neighbors following the same
procedure described above for the 2-hop neighborhood discovery.

6.4.2 Voting Phase

During the voting phase each alerted node sends its vote to all the other mem-
bers and respectively collects their votes (see Algorithm 1). Let us denote the
message that bears the vote from node s as m,(s). Each vote consists of the
nodes suspected by the sender, so for node s,

my(s) = id||D(s).

Node s “signs” its vote calculating the MAC with the next key K; from its
one-way key chain, and broadcasts

my(s), MACK, (1. (s)).

Following that, it sets a timer T}, to expire after time 7,. During that time
it waits to receive the votes of the rest of the alerted nodes and buffers them,
as it has to wait for the key publishing phase in order to authenticate them.

The vote of each alerted node needs to reach all other alerted nodes, which
means that we need a forwarding mechanism. Since the messages are signed
with a key known only to the sender, the attacker cannot change the votes.
However, we make no assumptions about the behavior of the attacking node.
This means that the attacker may refuse to forward votes from its neighbors.
For example, in Figure 6.2, the attacker may choose to drop the votes it receives,
so they must be forwarded through other paths, bypassing the attacker. Note
that these paths can consist of more than two hops.

To ensure that the votes propagate to all alerted nodes, we follow a broad-
cast message-suppression protocol, similar to SPIN [Kul02]. When an alerted
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Algorithm 1: The Voting algorithm

Data: IDs of alerted nodes
Result: Vector of collected votes

begin

Create m,(s) = id||D(s);

Calculate MACk; (m,(s)) using Kj;
Broadcast m,(s), MACk, (m.,(s));
Set timer T, = 7;

while ![T), (expired)] do

if receive m,(q) then
Store m,(g) and corresponding MAC;
Broadcast mqq,(q); // ADV message
end
if [receive myeq(q) ] then
Broadcast m,(q), MACK, (m.(q));
end
if [receive mqay(q) 1&&[ don’t have m,(q)] then
Start timer T.eq;
end
while ![T,..,(expired)] do
Register overheard my..q(q);
end
if [Treq(expired)] then
if loverheard my.4(q) then
Broadcast myeq(q); // REQ message

end
end

end

end
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Figure 6.2: Set of alerted nodes around the attacker q. Node w broadcasts its vote,
which needs up to three hops to reach all other alerted nodes, in case that q does not
participate in the protocol.

node receives a vote, it advertises it, by broadcasting an ADV message. Upon
receiving an ADV, each neighboring node checks to see whether it already has
received or requested the advertised vote. If not, it sets a random timer T4
to expire, uniformly chosen from a predetermined interval. When the timer
expires, the node sends a REQ message requesting the specific vote, unless it
has overheard a similar REQ from another node. In the latter case, it cancels
its own request, as it is redundant.

6.4.3 Publish Key Phase

In the Publish Key phase each node broadcasts the next key of its hash chain,
K, which was used to sign the vote. When a node receives the disclosed key,
it can easily verify the correctness of the key by checking whether K; generates
the previous one through the application of F. If the key is correct, it replaces
the old commitment K;_; with the new one in its memory. The node can now
use the key to verify the signature of the corresponding vote stored in its buffer
from the previous phase. If this process is successful, it accepts the vote as
authentic.

We allow sufficient time for the nodes to exchange their keys by setting a
timer T,. This timer is initialized just after a node publishes its own key and it
is set to expire at time 7,. During this time period, the nodes follow the same
ADV-REQ scheme that we described for the exchange of votes. That is, when
an alerted node acquires a key, it advertises it to its neighbors and they request
it sending the corresponding REQ message. In this way, the keys can propagate
to all the alerted nodes, even if the attacker does not participate in the process.

When the timer expires, the nodes move to the final step of processing the
votes and exposing the attacker. In the case where a key has been missed, the
corresponding vote is discarded. The code for this phase is given in Algorithm
2.

Since nodes are not time synchronized, and some nodes may start publishing
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Algorithm 2: The Publish Key algorithm

Data: Buffer of received votes
Result: Attacker’s ID
begin
Broadcast key Kj;
Set timer T}, = 7p;
while ![T},(expired)] do
if receive K; then
if Verify(K;) && Authenticate(m! ) then
Store Kj;
Broadcast maay (K;);
end
else
Discard m;

end
end

if [receive myeq(K;) | then
Forward the requested key K;;

end

if [receive mgqy(K;) |&&[ don’t have K;] then
Start timer T.eq;

end

while ![T,..,(expired)] do
Register overheard my..q(K;);

end

if [Treq(expired)] then
if loverheard my.q(K;) then

Broadcast myeq(K;);

end
end
end
end
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their keys while others are still in the voting phase, we need to consider “man
in the middle” attacks. When a node sends its vote, an attacker may withhold
it until that node publishes its key. Then it can change the vote, sign it again
with the new key, and forward it to the next alerted node. Following that,
the attacker also forwards the key, and the receiver will be able to verify the
signature and accept the fake vote as authentic.

An explicit defense against the previous attack would be to require the nodes
to be loosely synchronized as in yTESLA [Per02]. Here, however, we have de-
cided to keep things simple and deal with this problem implicitly by relying on
residual paths amongst the nodes (although we plan to investigate the synchro-
nization approach and consider its possible benefits). As votes are forwarded
by all nodes, even if an attacker refuses to forward a vote, it will arrive to the
intended recipients via other paths. We also take some additional measures in
our algorithm having a node accepting a vote only while it has not publish its
own key and it has not received the key from the node that sends the vote.

Another issue that we must discuss at this point is the key chain, which is
a core element of our algorithm. We must stress that its length is finite and
at some point all the available keys will have been used. Older keys cannot
be reused, since they have been revealed by the node. Therefore, the nodes
should be able to regenerate the key chain in a possibly compromised envi-
ronment. To do that we follow the same method that we described in Chap-
ter 3: before the node uses the last commitment, it creates a new hash chain
K{, Ki,...,K/_;, K] and broadcasts the new commitment K| authenticated
with the last unused key of the old chain. This essentially provides the connec-
tion between the two chains and the alerted nodes will be able to authenticate
the votes as before.

6.4.4 Exposing the Attacker

When each alerted node s1, s2, ..., s, has collected and authenticated the votes
from all the other alerted nodes, it will have knowledge of all the corresponding
suspect lists, D(s1), D(s2),...,D(sn), itself included. Then it applies a local
operator on these lists which will produce the final intrusion detection result,
i.e., the attacker’s ID. In particular it applies a count operator which counts the
number of times J; each node i appears in the suspect lists, or else the number
of votes it collects. All alerted nodes will reach the same result, since they all
apply the same operator on the same sets. Here we distinguish three cases:

e IDC holds. In Section 5.8.1, we proved that IDC is a sufficient condition
for the intrusion detection problem. Then, we know that if a node collects
more nodes than all other nodes, this node is the attacker. There is also
the case where two or more nodes collect the same number of votes. In
this case, we proved that still the nodes can distinguish the attacker, by
inspecting their 2-hop neighborhood table.

e IDC does not hold and NC holds. In this case, if there is one node hold-
ing the majority of the nodes, we again know that this is the attacker.
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If not, then the honest nodes which also collect the majority have non-
alerted neighbors. So, the nodes move to the external ring reinforcement
phase, where these neighbors are called to vote and support their honest
neighbors. We will see in Section 6.4.5 that in this case the attacker is
revealed.

e IDC does not hold and NC does not hold. Then no safe conclusions can
be drawn. As we proved in Section 5.8.2, IDC or NC needs to hold in
order to find the attacker. In different case there is no algorithm to solve
the intrusion detection problem.

6.4.5 External Ring Reinforcement Phase

As we said, when there are other nodes that have the same set of alerted neigh-
bors AN with respect to the attacker, i.e., IDC does not hold, the voting process
may be inconclusive, if these nodes collect the same number of votes. In this
section we present an algorithm where, if NC holds, the alerted region can dis-
tinguish amongst the prevailing candidates and find the actual one. So, for
what follows we assume that NC holds, meaning that all neighbors of the at-
tacker are alerted and that honest nodes collecting the majority of the votes
have non-alerted neighbors.

Let us assume the set P = {p1,p2,...,pr} of the nodes collecting the same
number of votes as the attacker, including the attacker itself. According to NC,
the nodes in P do not have exactly the same neighborhood. Honest ones will
also have other neighbors, which are not in alerted state and are going to play
an important role in this phase. Therefore, we make the following definition:

Definition (External Ring). The external ring is defined as the set of nodes
which are not alerted, but they are directly reachable by an alerted node, i.e.,
any of them is a direct neighbor of at least one node in the alert region.

Figure 6.3 shows an example where nodes 96 (the attacker) and 76 have the
same alerted neighborhood, and therefore collected the same number of votes
during the voting phase, i.e., P = {96,76}. The circle in the figure shows the
neighborhood of the attacker. The nodes in the external ring are marked as
white, while the alerted nodes as gray.

The neighborhood of node 76 also includes the nodes 81 and 79, which are
not alerted. These two nodes know that their neighbor 76 is not the attacker,
since they are not alerted. If they share this information with the nodes in
the alerted region, they can help them distinguish the attacker. Therefore,
they somehow come to support their neighbor. This can reinforce the intrusion
detection process because there will be no node to support the attacker. If such
a node existed it would be the attacker’s neighbor and consequently, member of
the alerted region.

The external ring reinforcement phase is initiated by the nodes in the alerted
region. They broadcast a request to their non-alerted neighbors, including the
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Figure 6.3: The attacker’s external ring is defined by the nodes which are 2-hops
away from the attacker.

set P in the message. The intended receivers check to see if any nodes in P are
their neighbors and broadcast a message voting in favor of them.

The response message sent by any node of the external ring is forwarded by
alerted nodes as in the voting and publish key phases, so that it can reach all
nodes in the alerted region. It is also signed using the next key in the key chain
of the sender. The key is released after some fixed period of time and used by
the receivers to authenticate the message.

For the example shown in Figure 6.3, nodes 81 and 79 will vote in favor of
node 76. Since there are no other nodes who have a neighbor from P, there will
be no more votes. Hence, node 76 will collect two votes and node 96 none. Now
the alerted nodes can conclude on the attacker successfully.

6.4.6 Responding to the Attack

Once the network is aware that an intrusion has taken place and have detected
the attacker, appropriate actions must be taken as a response. The first action
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is to cut off the intruder as much as possible and isolate the compromised nodes.
After that, proper operation of the network must be restored. This may include
changes in the routing paths, updates of the cryptographic material (keys, etc.)
or restoring part of the system using redundant information distributed in other
parts of the network. Depending on the confidence and the type of the attack,
we categorize the response to two types:

e Direct response: Excluding the suspect node from any paths and forcing
regeneration of new cryptographic keys with the rest of the neighbors.

e Indirect response: Notifying the base station about the intruder or re-
ducing the quality estimation for the link to that node, so that it will
gradually loose its path reliability.

Intrusion detection systems in other types of networks always report an in-
trusion alert to a human, who takes the final action. This approach is usually
neglected in relevant literature. Sensor networks should (and they actually are)
able to demonstrate an autonomic behavior, taking advantage of their inherent
redundancy and distributed nature. Autonomic behavior means that any re-
sponse to an intrusion attempt is performed without human intervention and
within finite time.

6.5 The IDS Architecture

Having covered the algorithmic part of our IDS, we now emphasize on the
conceptual modules that implement this algorithm. They basically define the
architecture of the IDS agents, who reside in all nodes of the network. They
can broadcast messages and communicate with the agents in the neighboring
nodes, allowing the realization of our distributed algorithm. Figure 6.4 shows
analytically the architecture. The functionality of each module is outlined be-
low.

e The LocalPacketMonitoring module gathers audit data to be pro-
vided to the LocalDetection module. As we said, audit data in a sen-
sor networks IDS can be the communication activities within the node’s
radio range.

e The NbPerimeter module is responsible for maintaining consistent in-
formation about 1-hop and 2-hop neighbors of the nodes. Information
about 2-hop neighbors is needed because the detection process involves
the communication of the nodes which are neighbors of the (yet unknown)
attacker, but they might be 2-hops away from each other.

o After the deployment of the sensor network, the KeyManagement module
of the node generates a one-way key chain of length n, using a pre-assigned
unique secret key K,,. Then it announces the hash chain commitment K
to the rest of the alerted nodes. The KeyManagement module also stores
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the corresponding information from them, i.e., the node IDs and their
keys. This information needs to remain consistent and up-to-date during
the lifetime of the network. So, the KeyManagement module updates
the corresponding key every time a node publishes a new one from its key
chain.

The LocalDetectionEngine collects the audit data and analyzes it
according to some given rules. A set of rules is provided for each attack,
and whenever one or more rules are satisfied, a local alert is produced
by the module. When we say that the LocalDetection engine of a
node s produces an alert, what we mean is that it simply outputs some
set D(s) of the suspected nodes. The size of D(s) depends on the qual-
ity of the alert module and the nature of the attack. If |D(s)| = 1,
then the sensor has identified the source of the attack and the IDS pro-
tocol moves to local response. In different case, D(s) is passed on to the
CooperativeDetection engine.

The Voting module is the first part of the CooperativeDetection
engine. It implements the voting algorithm of Section 6.4.2. The module
sends out the suspect list D(s) and collects the corresponding lists from
the rest of the alerted nodes.

The PublishKey module takes over after the voting and runs the algo-
rithm described in Section 6.4.3, where the node publishes the next key
of its hash chain and collects the keys from the rest of the alerted nodes.
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Then it authenticates the received votes and extracts the suspect lists. Ag-
gregation of these lists may or may not give a majority to a node. In the
former case the result is given directly to the LocalResponse module.
In the latter case, and if NC holds, the ExternalRingReinforcement
module initiates the next phase.

e The ExternalRingReinforcement module follows the protocol that
is described in Section 6.4.5. Given that NC holds, the identity of the
attacker will be revealed. Then it is passed to the LocalResponse mod-
ule.

e The LocalResponse module takes appropriate actions against the at-
tacking node, as discussed in Section 6.4.6.

This architecture results in a very lightweight IDS agent that can perfectly
fit into the memory of a mote and requires a small amount of its computational
and communication resources. More evidence on the resources consumption and
performance of this architecture are given in the following sections.

6.6 Simulation Results

We have simulated a sensor network of 100 nodes placed uniformly at random
in order to test our proposed intrusion detection algorithm. For each run of the
simulation, we chose at random one node to be the attacker. This way we could
have the neighbors of that node being in alert mode and apply the intrusion
detection algorithm, assuming of course that they did not know the attacker.
In what follows in this section, we assumed that all neighbors of the attacker
are alerted.

Figure 6.5 shows the probability that there exist other alerted nodes having
the same alerted neighborhood as the attacker, i.e., the probability that IDC
does not hold. We presented an example of this case in Figure 6.3, where nodes
96 (the attacker) and 76 have the same AN. Then, as we saw, the rest of the
nodes in the alert region are unable to conclude on the attacker. As expected,
this probability drops as the average number of neighbors increases, but still
remains high (close to 30% for a very dense network). That’s why the external
ring reinforcement phase is necessary to complete the protocol.

During the external ring reinforcement phase, nodes not being alerted are
allowed to vote, in order to distinguish the attacker between the nodes in the
set P, given that all nodes of the attacker are in alert mode. This can only
be successful when the rest of the nodes in P do not have exactly the same
neighborhood as the attacker. Otherwise, this phase and therefore the intrusion
detection will fail. Figure 6.5 shows this probability, i.e., the probability that
there exists a node s € P with the same neighborhood as the attacker. This is
equivalent to the probability that NC does not hold. Of course, as the network
becomes more dense, this probability drops, and for more than 7 neighbors in
average it becomes less than 10%.
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Figure 6.5: Probability that there exists a node with the same alert neighborhood
as the attacker. This is much higher than the probability that a node has exactly the
same neighborhood as the attacker. The former reflects the failure of the IDC, while

the latter the failure of NC and therefore the impossibility of the intrusion detection
problem.

In Figure 6.6 we have also calculated the probability that the IDS successfully
identifies the attacker. To do this we have run the protocol in 10,000 different
topologies, choosing each time a random attacker. If the voting phase was
conclusive the protocol ended, in different case the external ring reinforcement
phase was activated. As expected, the protocol always succeeded, except for the
cases where another node with exactly the same neighborhood as the attacker
existed.

6.7 Implementation

In this section, we present experimental results from our implementation of
the IDS described in this chapter. The goal is to exhibit a framework that
actually works on the motes, and can be used as a reference point. Moreover,
it will become clear to the reader that such a system for sensor networks is
lightweight enough to be a viable and realistic solution from implementation
and real deployment perspective.

The current development of the IDS algorithm builds on Moteiv Telos motes,
a popular architecture in the sensor network research community. It features
the 8 MHz TT MSP430 micro-controller and a 16-bit RISC processor that is well
known for its low energy consumption. Yet, even though the implementation
is tested on the Telos motes, all the components are designed with adequate
generality, such that porting them to different sensor platforms should yield
similar performance results.
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Figure 6.6: The overall success rate of the protocol.

6.7.1 Memory Requirements

The memory footprint of the our implementation is an important measure of
its feasibility and usefulness on memory constrained sensor nodes. The total
memory footprint is composed of the memory footprint of the compiled code,
which is present in ROM, and the memory footprint of the data memory required
to run the code. An IDS for constrained devices must be compact in terms of
both code size and RAM usage, in order to leave room for applications running
on top of the system. Table 6.1 lists the memory footprint of the modules,
compiled for the MSP430 microcontroller.

Table 6.1: Size of the compiled code, in bytes.

Module RAM usage Code Size
Neighborhood Discovery 136 968
Exchange of Keys 216 4060
Reliability (ADV-REQ) 104 32
Voting 159 4844
Total 615 9904

The largest module in terms of RAM footprint in Table 6.1 is the Key
Management module. This is because the Key Management module contains
statically allocated tables for the neighbors and their keys. In terms of ROM, the
largest module is the Voting module, since it has the most lines of code. In total,
the IDS consumes 615 bytes of RAM and 9,904 bytes of code memory. This
leaves enough space in the mote’s memory for user applications. For example,
the total RAM available in Telos motes is 10 KB.
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6.7.2 Experiments

To evaluate the performance of the implementation of the IDS, we tested it in a
real environment. In particular we deployed several nodes in random topologies
on the floor of an office building. We set a node to be the “attacker” and we
gradually incremented the number of its neighbors to form larger alert regions.
For each alert region size, we repeated the experiment for 20 different random
topologies. Let us note that for these experiments we took care that IDC always
held, so that we could always find the attacker. We have covered the scenario
that this is not the case in the previous section.

The experiments were performed by having the motes running a typical
monitoring application. In particular we loaded the Delta application, where the
motes report environmental measurements to the base station every 5 seconds.
We also deployed the MultihopLQI protocol at the routing layer, which is an
updated version of the MintRoute protocol [Woo03a] for the Chipcon CC2420
radio. We tuned it to send control packets every 5 seconds. Our goal is to
demonstrate how well the IDS will function, even under the presence of traffic
on other layers. Then we simulated an attack to trigger the IDS protocol.
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Figure 6.7: Measured communication cost for different number of alerted nodes.

Figure 6.7 depicts the communication cost of the protocol measured in pack-
ets sent by a node. In particular, we broke it down to the packets exchanged for
the voting phase and the publish key phase (as a total of exchanging the votes,
ADV, REQ and keys). As it is expected, the number of packets exchanged in the
two phases are the same, since the protocol does not change; only the content of
the packets does. For small alert region sizes the cost is only about 12 packets,
while for more dense regions the cost still remains low (19 packets). This is
the total communication cost per attack and involves only the alerted nodes.
It is also measured as a mean time averaged on different random topologies.
The number of packets depends on the topology and the number of the alerted
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nodes, as these parameters determine the number of votes and keys circulated
amongst them.
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Figure 6.8: Detection time for different number of alerted nodes.

Next we measured the time that each phase of the IDS protocol required,
i.e., the voting phase and the publish key phase. Figure 6.8 shows the measured
mean times for each of the above phases, for different number of alerted nodes
(i.e., attacker’s neighborhood). What we can infer from Figure 6.8 is that the
voting phase has smaller deviation than the publish key phase, as the number
of alerted nodes increases and contributes the smallest overhead in the total
delay. The most time-consuming phase is the publish key phase, where nodes
exchange their keys and verify the votes.

To get a better insight of this, we measured the time needed for the compu-
tational operations within this phase. In particular, the time a node needs to
authenticate each received key (i.e., to check if the hash of the new key matches
with the previous one) is approximately 15ms. The validation of the signature
of the vote takes about 25ms and the aggregation of the received vote with the
rest in order to produce the final result takes 150 ms. For the construction of
its own vote, a nodes needs 60 ms and signing it with its key takes 25 ms.

Figure 6.9 expresses the percentage of costs for computation and communi-
cation for the publish key phase. We can conclude that most of the overhead
arises from the transmission of data rather than from any computational costs.
This overhead for the communication is due to the inherent inability of TinyOS
to receive the next packet before finishing the processing of the current one. In
our implementation, upon receiving a key, the node has to verify it is a valid
one before accepting it. To save memory space, we do not buffer the key for
later processing, but rather we authenticate it on the fly. Meanwhile, TinyOS
cannot receive the next key. That’s why we had to include a random delay so
that nodes publish their keys in different time instances. This delay, although
experimentally minimized, contributes significantly to the results of Figure 6.9.
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Figure 6.9: Costs of computation and communication in terms of time for the Publish
Key phase.

It is also important to see how the behavior of the IDS is affected by the
traffic introduced by the application layer. That is, if the application needs to
increase the data rate of the information routed in the network, the bandwidth
that remains for the communication of the IDS agents decreases. We performed
experiments to see how this affects the detection delay. In particular, we gradu-
ally increased the data rate of the Delta application. In Delta, each sensor node
reports measurements periodically sending a packet to the base station. Delta is
based on the MultihopLQI at the routing layer, which broadcasts route update
packets periodically to maintain the routing tree. We tuned MultihopLQI to
send a route update packet every 5 seconds and experimented with different
data rates for Delta. For the MAC layer we used the default in TinyOS, i.e.,
the CSMA protocol.

Figure 6.10 shows the detection delay of the IDS as the aggregative data
rate of packets at the routing and application layers increases. This increase
actually corresponds to different packet rates of Delta (1 packet every 1, 3, 5
and 10 seconds), as the rate of the route update packets was fixed. The number
of alerted nodes was set to 6 throughout the experiments. As we see from the
figure, for an increase of 300% in the data rate (from 34.8 bps to 139.2 bps) the
detection delay is increased only by 1.6 seconds. As more and more packets are
sent and received from the nodes, a delay to exchange the necessary packets for
the intrusion detection is unavoidable, due to the CSMA back-off waiting time.
We believe that a better MAC layer protocol would improve this delay further.

6.8 Conclusions

In this chapter, we discussed the design of an intrusion detection system for sen-
sor networks that uses a large number of autonomous, but localized, cooperating
agents in order to detect an attacker. The nodes use coordinated surveillance
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Figure 6.10: Behavior of the detection process under the presence of traffic on other
layers.

by incorporating inter-agent communication and distributed computing in de-
cision making to collaboratively infer the identity of the attacker from a set of
suspicious nodes.

The IDS we discussed is novel and realistic, considering the current state of
the art in wireless sensor networks. The demonstrated implementation details
show that it is lightweight enough to run on sensor nodes, in terms of com-
munication, energy, and memory requirements. This shows that studying the
problem of intrusion detection in sensor networks is a viable research direction
and with further investigation it can provide even more attractive solutions for
securing such types of networks.






Chapter

Conclusions

The difficulties of security in sensor networks mainly stem from the constraints
imposed by the simplicity of sensor devices: limited power, limited communi-
cation bandwidth and processing capabilities, and small storage capacity. In
this thesis, we concentrated on the study and design of distributed security
algorithms for sensor networks that prevent the attacker from accessing the in-
formation routed within or injecting malicious packets. We also studied the
problem of detecting the attacker when the prevention measures cannot succeed
and she intrudes the network. For each of the proposed solutions we emphasized
on minimizing the overhead imposed by its implementation on widely used sen-
sor platforms, so that it becomes realistic and attractive to the developer. We
now summarize the key results of our work and discuss open issues.

7.1 Summary of Main Results

First we focused on the establishment of trust relationship among wireless sen-
sor nodes, and presented a key management protocol for sensor networks. The
protocol includes support for establishing four types of keys per sensor node:
individual keys shared with the base station, pairwise keys shared with individ-
ual neighboring nodes, cluster keys shared with a set of neighbors, and a group
key shared with all the nodes in the network. We showed how the keys can be
distributed so that the protocol can support in-network processing and efficient
dissemination, while restricting the security impact of a node compromise to
the immediate network neighborhood of the compromised node. Applying the
protocol makes it really hard for an adversary to disrupt the normal operation
of the network.

Shared key cryptography can not be used to secure other operations in sensor
networks, like network programming, where bulk data have to be disseminated
from the base station to the sensor nodes. We therefore presented a method for
verifying the integrity and authenticity of such data. The two cryptographic

109
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primitives used in our security protocol are digital signatures and cryptographic
hashes. Instead of using RSA or Elliptic Curve Cryptography like proposed
by other researchers, we constructed our own r-time signature scheme for ef-
ficiently constructing and verifying the digital signatures. This allowed us to
use a protocol that imposes asymmetric cryptography properties using solely
symmetric cryptographic primitives and drop drastically the energy and time
requirements. Our method allows sensor-network developers to configure the
security-performance trade-off to suit their particular needs.

We have argued that despite the security offered by the above protocols,
a sensor network will have always vulnerabilities that an adversary could ex-
ploit. Intrusion detection can complement the intrusion prevention techniques
to secure the network. However, new techniques must be developed to make in-
trusion detection work efficiently for sensor networks. We have argued that such
techniques should be distributed and cooperative. If such a scheme is followed,
there are some interesting findings. In particular, we proved that if two nodes
are not suspected by the same set of neighbors, it is sufficient to distinguish the
attacker. Moreover, if an attacker is suspected by all its neighbors, the above
condition is also necessary.

Then we provided a cooperative IDS, in which the nodes use coordinated
surveillance by incorporating inter-agent communication and distributed com-
puting in decision making to collaboratively infer the identity of the attacker
from a set of suspicious nodes. The factor that determined the design of the
IDS is that the attacker, as well as any other compromised nodes that col-
laborate with her, can interfere with the protocol and affect the result. The
countermeasures consist of authenticating the exchanged packets and sending
them through multiple paths. The communication cost indeed constitutes the
highest percentage of the overhead, but still, it is as low as about 15 packets per
node. The overall detection time is a few seconds and it successfully concludes
on the attacker with probability up to 95%.

7.2 Discussion and Future Research

Some interesting research directions arise from the theorems of Chapter 5. While
we provided sufficient and necessary conditions for detecting the attacker in the
case of t = 1, it remains an open question whether such conditions exist in the
case where the attacker can capture more nodes than the source (¢ > 1). In
this case, the nodes controlled by the attacker can act as “collaborators” of the
source of the attack, trying to prevent the intrusion detection protocol from
successfully revealing the attacker. For example, they can join the rest of the
alerted nodes, such that they can affect the voting result. In case of t > 1,
it is also possible that the alert modules of some honest nodes are triggered
by different attackers. Clearly, in this case we need to come up with stronger
necessary and sufficient conditions for the intrusion detection problem.

In Chapter 6, we presented an algorithm assuming that the attacker can
control only one node (¢ = 1), in order to be consistent with theorems of Chap-
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ter 5. It is not hard to see however that it can be also applied in the case that
t > 1. The cryptographic tools that we use can offer the required security for
the messages exchanged by honest nodes in our protocol. Since these messages
are signed with keys only known to their initial senders, they cannot be altered
by intermediate malicious nodes. What a collaborating node can do however, is
to include itself in the voting process and try to affect the final result by casting
votes against legitimate nodes. The best strategy for them would be to vote
against a specific honest node, hoping that it will collect more votes than the
attacker. This clearly depends on the number of the collaborators and sets a
limit on how many of them our protocol can tolerate. If there is a set of at least
t + 1 honest alerted nodes, the majority vote will still point to the attacker.

The second thing that a collaborator can do is to drop packets sent by
honest nodes. According to the protocol, alerted nodes may be more than one
hop from each other, so in order to communicate with each other they are
based on intermediate nodes that forward their packets. Being in that path,
a collaborator can selectively drop the votes send by some nodes, affecting the
final result. Our protocol is based on the massive redundancy of sensor networks
and the existence of multiple paths between two nodes to deliver the packets to
all participating nodes. As long as this assumption holds, the proposed protocol
can be used to identify the attacker, even in the presence of collaborators.

We also plan to look into dynamic neighborhood changes for our IDS system
and in particular, into secure node addition and removal in sensor networks.
Security in this case is necessary, or else the attacker would be able to introduce
her own nodes (i.e., collaborators) and avoid detection. Of course, secure node
addition is an independent problem, and it was addressed in Chapter 3, but it
is interesting to see how it can be adapted to work smoothly with our intrusion
detection system.

Another important topic opens after the solutions provided by Chapter 6.
Having designed an IDS architecture that is appropriate for sensor networks,
it makes sense to start looking into specific attacks and define rules for the
local detection module. That is, rules that based either on misuse or anomaly
detection can produce suspect lists. The best way to do that is to look into
how specific attacks can be realized in practice and study the methods from the
attacker’s point of view. This will give a better insight of the attacks and will
lead to powerful detection rules. Then, another question comes in the scene:
Could we define more general rules that can be applied for detecting a broader
class of attacks? Definitely the research area of intrusion detection in wireless
sensor networks promises to be an interesting research field in the future.
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