LIDeA: A Distributed Lightweight Intrusion
Detection Architecture for Sensor Networks

loannis Krontiris
Athens Information
Technology
19.5 km Markopoulo Ave.,
Athens, Greece

ikro@ait.edu.gr

ABSTRACT

Wireless sensor networks are vulnerable to adversaries as
they are frequently deployed in open and unattended envi-
ronments. Preventive mechanisms can be applied to protect
them from an assortment of attacks. However, more sophis-
ticated methods, like intrusion detection systems, are needed
to achieve a more autonomic and complete defense mecha-
nism, even against attacks that have not been anticipated
in advance. In this paper, we present a lightweight intrusion
detection system, called LIDeA, designed for wireless sensor
networks. LIDeA is based on a distributed architecture, in
which nodes overhear their neighboring nodes and collabo-
rate with each other in order to successfully detect an intru-
sion. We show how such a system can be implemented in
TinyOS, which components and interfaces are needed, and
what is the resulting overhead imposed.

Categories and Subject Descriptors

C.2.0 [Computer - Communication Networks]: Gen-
eral—Security and protection; C.2.4 [Computer - Com-
munication Networks|: Distributed Systems

General Terms
Algorithms, Security, Theory, Experimentation

Keywords

Sensor Networks, Intrusion Detection, TinyOS

1. INTRODUCTION

The pervasive interconnection of autonomous sensor de-
vices has given birth to a broad class of exiting new applica-
tions in several areas of our lives, including environment and
habitat monitoring, healthcare applications, home automa-
tion, and traffic control. At the same time, however, their
unattended nature and the limited resources of their nodes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SecureComm '08, September 22 - 25, 2008, Istanbul, Turkey

Copyright 2008 ACM 978-1-60558-241-2 ...$5.00.

Thanassis Giannetsos
Athens Information
Technology
19.5 km Markopoulo Ave.,
Athens, Greece

agia@ait.edu.gr

Tassos Dimitriou
Athens Information
Technology
19.5 km Markopoulo Ave.,
Athens, Greece

tdim@ait.edu.gr

have created equal number of vulnerabilities that attackers
can exploit in order to gain access in the network and the
information transferred within.

There are several classical security methodologies so far
that focus on trying to prevent these intrusions. However,
it is impossible, or even infeasible, to guarantee perfect pre-
vention. Not all types of attacks are known, and new ones
appear constantly. As a result, attackers can always find
security holes to exploit in order to gain access in the sensor
network. These intrusions will go unnoticed and they will
likely lead to failures in the normal operation of the network,
as Figure 1(a) suggests.

The last resort is intrusion detection, which can act as
a second line of defense: it can detect third party break-in
attempts, even if this particular attack has not been expe-
rienced before. If the intruder is detected soon enough, one
can take appropriate measures before any damage is done
or any data is compromised (Figure 1(b)). An effective IDS
can also help us design better prevention mechanisms, by
collecting information about intrusion techniques and attack
patterns.

Any part of the sensor network can be a possible point
of intrusion, since all nodes act as routers of information
and they can be easily manipulated or subverted by an at-
tacker. Therefore, an IDS architecture for wireless sensor
networks has to be decentralized. In this paper, we present
such an approach to organizing autonomous but coopera-
tive IDS agents. Our approach organizes the cooperation of
the agents according to the distributed nature of the events
involved in the attacks, and, as a result, an agent needs to
send information to other agents only when this information
is necessary to detect the attack. The coordination mech-
anism arranges the message passing between the agents in
such a way so that the distributed detection is equivalent to
having all events processed in a central place.

In this work, we describe an IDS architecture based on
this approach and implement an experimental intrusion de-
tection system called LIDeA (Lightweight Intrusion Detec-
tion Architecture). But most importantly, this is the first
work to present such implementation which is at the same
time both realistic and lightweight enough to run on compu-
tationally and memory restricted devices such as the nodes
of a sensor network.

2. RELATED WORK

Loo et al. [12] and Bhuse and Gupta [3] describe two IDSs
for routing attacks in sensor networks. Both papers assume

Attack
prevention

Intrusion Failure

O——0—— 3K

; Vulnerability
> 3

Intrusion Failure

Vulnerability Intrusion
> detection

Figure 1: Intrusion sequence. (a) Attackers may
exploit a vulnerability and intrude into the network,
causing a failure. (b) Intrusion detection functions
as a second line of defense.

that routing protocols for ad hoc networks can also be ap-
plied to WSNs: Loo et al. [12] assume the AODV (Ad
hoc On-Demand Distance Vector) protocol while Bhuse and
Gupta [3] use the DSDV and DSR protocols. Then, spe-
cific characteristics of these protocols are used like “number
of route requests received” to detect intruders. However, to
the best of our knowledge, these routing protocols are not
attractive for sensor networks and they have not been ap-
plied to any implementation that we are aware of.

Anomaly detection in sensor networks has been studied in
[5] and [14]. Nodes listen to messages in their radio range
and store certain message fields that might be useful to the
rule application phase. Each node has a fixed-size buffer to
store the packets received. In [5] the authors focus on de-
tecting some attacks, like message delay, repetition, data
alteration, blackhole and selective forwarding. It is con-
cluded that the buffer size to store the monitored messages
is an important factor that greatly affects the false positives
number. In [14] the authors monitor the packets arrival time
and received power. If its power is not within certain limits,
the packet is characterized anomalous. An intrusion alert is
raised if the rate at which anomalous packets are detected
over the overall rate at which packets are received is above
a given threshold.

Another problem of intrusion detection systems for WSN
is where the IDS agents should be placed. In [1], the authors
argue that detection should be based only on the analysis
of packets that pass through a node and they determine
which nodes should be loaded with an IDS agent based on
the concepts of dominating set and minimum cut set and
on the requirement that the nodes running the IDS module
should be tamper resistant. On the other hand, Roman et
al. [17] propose an IDS architecture where all nodes are
loaded with an IDS agent, and they promiscuously monitor
the traffic. This agent is divided into two parts: local agents
and global agents. Local agents are active in every node
and are responsible for monitoring and analyzing only local

sources of information. Global agents are active at only a
subset of nodes. They are in charge of analyzing packets
flowing in their immediate neighborhood.

Our work is different from the above approaches in the
sense that we try to generalize the problem of intrusion de-
tection for sensor networks and build an architecture that
tolerates the presence of other compromised nodes that may
exist and collaborate with the attacking node in order to hin-
der the detection process. In our model, all nodes are loaded
with the same IDS agent and they dynamically become acti-
vated around the attacking node and collaborate in order to
isolate it from the network. We do not concentrate on how
to detect specific attacks, although we provide a use case
and the necessary modules to describe rule patterns for de-
fending against various attacks. We focus on the distributed
computing nature of the architecture in order to show that
with collaborative processing an IDS system can become
lightweight enough to be realistic for sensor networks.

3. SYSTEM MODEL

We consider an asynchronous multihop wireless sensor
network. Each node of the network has a single wireless
transceiver through which it can communicate with the other
nodes within its communication range. We do not assume
a unit-disk graph model for the network. Instead, we con-
sider a realistic representation for the communication model,
where the range can be affected by various reasons and
change from one transmission to the next. The nodes them-
selves are assumed to be static, as it is the case for many
sensor network paradigms.

We also consider unreliable links and unpredictable delays
for the wireless links. When a node transmits a packet, it
does not know which nodes successfully received the mes-
sage, since the MAC layer of the receivers does not send any
acknowledgments or requests for retransmissions. A node
may miss to receive a message, either because a collision oc-
curs or because its radio is not available at the time of the
transmission.

4. INTRUSION DETECTION IN WSN

Intrusion detection not only means to detect that a node
has been attacked, it also includes identifying the source of
an attack. In our case, the cooperative intrusion detection
process is triggered by an attack and the subsequent alerts
received by the neighboring sensors. The process ends by
having the participating sensors jointly ezpose the source.

More formally, the task of intrusion detection (ID) can
be defined as follows: Find an algorithm that satisfies the
following properties:

e If an honest node s exposes a node ¢, then ¢ is the
source of the attack.

e If the attacker attacks, then at most after some time 7
all honest nodes participating in the detection process
expose some node.

Our approach for solving this problem is to have sensor
nodes around the source of the attack exchange a list of
suspects, resulting from their partial view of the network,
and apply a voting scheme to conclude to which node they
are going to expose. This protocol should be able to toler-
ate the presence of the attacker and its collaborator nodes,

which might try to hinder its proper operation and success-
ful outcome.

This problem of reaching consensus in a network of n
nodes among which ¢ nodes may behave faulty is well known
as the Byzantine Agreement Problem, first introduced by
Pease, Shostak and Lamport [15] in 1980. According to this
problem, there is a set of processors some of which may be
faulty. Each nonfaulty processor has a private value that
must be communicated to the rest. The problem is to de-
vise an algorithm that will allow each nonfaulty processor
to compute a vector of values corresponding to each of the
n processors, such that

1. the nonfaulty processors compute exactly the same
vector;

2. the element of this vector corresponding to a given
nonfaulty processor is the private value of that proces-
Sor.

After this interactive consistency has been achieved, each
nonfaulty processor can apply a function to the vector, and
since this vector is the same in all of them, an exact agree-
ment is necessarily reached.

The analogy to the problem we define in this work is clear.
In our case the processors are the sensor nodes, and the
private values are the lists of suspected nodes. If the nodes
can exchange messages and achieve interactive consistency
despite the presence of other compromised nodes, then they
can all apply a simple function, in this case a majority rule,
and conclude to the same result.

However, the system model in our case is different than
the one in the original Byzantine Agreement Problem, due
to the nature of sensor networks. In particular, the char-
acteristics of sensor networks that change the conditions of
the Byzantine Agreement Problem are the following:

1. Communication Medium: In the Byzantine Agreement
Problem, it is assumed that each processor communi-
cates only by means of two-party messages. On the
other hand, in sensor networks the nodes use a broad-
cast channel, meaning that every node that is within
range of another node can overhear its messages.

2. Communication Range: In a sensor network, nodes
that need to reach consensus (in our case, the nodes
around the attacker) are not necessarily within range
of each other. Therefore some sort of forwarding has
to be used for a message to reach all the participatory
nodes.

Moreover, as we mentioned in Section 3, sensor nodes
are asynchronous and messages are not guaranteed to reach
their destinations. It is well known that solving consensus
deterministically requires some synchrony assumptions [6].
However, some papers have considered the consensus prob-
lem in wireless ad hoc networks, by using two main ways of
circumventing the impossibility result; failure detectors [20,
4] and randomization [18]. These solutions are not attrac-
tive for sensor networks, since the former pose a hierarchical
model, where some nodes need to act as “clusterheads” and
the latter result in a large number of rounds with relatively
high message overhead per round.

Having said this, let us note that this paper does not pro-
pose a new consensus algorithm nor a new model for solv-
ing consensus. We accept the possibility of message losses,

which may result in inconsistencies in the vectors that the
nodes compute. However, we compensate this by explor-
ing the possibilities of redundant paths, message overhear-
ing and a simple advertise-request scheme. In this way, we
manage to keep the protocol lightweight enough for highly
resource constraint networks and at the same time achieve
our primary goal of distributed intrusion detection.

S. THREAT MODEL AND ASSUMPTIONS

We assume that an attacker can capture a number of
nodes to launch an attack. We model this by allowing these
nodes to behave in an arbitrary manner (Byzantine failure).
We distinguish among compromised nodes one single node
which is the source of the attack, i.e., this node is the first
to behave in a faulty way. All non-source faulty nodes are
called collaborators. We assume that collaborators are neigh-
bors of the source of an attack and that they are less than
its honest neighbors. The attacker can follow the protocol
for a certain period of time and therefore behave in a way
which cannot be detected. However, at some point in time
the attacker must deviate from the protocol in some faulty
node to launch an attack. At this point in time, we say that
the attacker attacks.

While an adversary can completely take over nodes and
extract their cryptographic keys, we assume that such an ad-
versary cannot “outnumber” legitimate nodes by replicating
captured nodes or introducing new ones in sufficiently many
parts of the network. This assumption is needed because an
IDS for WSNs should exploit the massive parallelism in such
a network to detect intrusion attempts. In the sections that
follow, we will see that as long as this assumption holds, the
proposed architecture can be used to identify the attacker.

We also make the implicit assumption that the time re-
quired for the completion of the initialization phase of our
protocol (Sections 7.2 and 7.3) is smaller than the time
needed by an adversary to compromise a sensor node dur-
ing deployment. Therefore, the initialization phase runs un-
interrupted by malicious nodes. We also assume that the
topology of the network cannot change during this phase.
After that and throughout the lifetime of the network, nodes
may leave the network, possibly because of energy depletion,
or new nodes may be deployed. In the latter case we assume
that there is a secure node addition protocol that is followed
to prevent an attacker from introducing her own nodes.

6. ARCHITECTURAL OPTIONS

An IDS for sensor networks should be network-based, in
the sense that raw network packets should be used as the
audit source. A popular technique in sensor networks, and
the one that we are going to follow for our system, is the
watchdog approach [13]. Each packet transmitted in the
network is not only received by the sender and the receiver,
but also from a set of neighboring nodes within the sender’s
radio range. Normally these nodes would discard the packet,
since they are not the intended receivers, but for intrusion
detection this can be used as a valuable audit source. Hence,
a node can activate its IDS agent and monitor the packets
sent by its neighbors, by overhearing them. Since any node
can act as a router and traffic is usually distributed for load
balancing purposes, packet monitoring should take place in
several nodes of the network.

Usually, when the activities involved in an attack fall be-

yond the scope of one IDS component, distributed IDS sys-
tems require that the audit data collected from different
places must be forwarded to a central location for analy-
sis. In sensor networks such a location could be the base
station. However, it is not a wise choice to make, given
the big communication overhead involved. This means that
some sort of aggregation must take place locally, at the area
of the attack, either at a specific node in the network or in
a distributed fashion.

In the first case, the intrusion related information from
different locations can be collected by a node (e.g. cluster
head) and correlated together to make the final decision on
the intrusion. The rest of the nodes do not participate in this
decision. In such architectures, the decision-making nodes
can attract the interest of an attacker, since their elimination
would leave the network undefended. Furthermore, they re-
strict computation-intensive analysis of overall network se-
curity state to a few key nodes. Their special mission of
processing the information from other nodes and deciding
on intrusion attempts results in an extra processing over-
head, which may quickly lead to their energy exhaustion,
unless different nodes are dynamically elected periodically.
Therefore, the second case, where audit data are aggregated
in a distributed fashion is more appropriate for sensor net-
works.

7. LIDEA ARCHITECTURE

The proposed IDS is based on a distributed intelligent
agent-based system. The agents that are hosted by the
nodes are capable of sharing their partial views, agree on
the identity of the source and expose it. By distributing the
agents throughout the network and have them collaborate,
we make the system scalable and adaptive. When a ma-
licious node is found, an alarm message is broadcasted to
the network. Each node then makes a final decision based
on the detection reports from other nodes. To avoid drastic
flooding over the network caused by broadcasting local de-
tection results, the alarm messages are restricted to a region
formed only by the alerted nodes.

In its configuration, the system model does not include
timing assumptions and is characterized by communication
between 1-hop and 2-hop neighbors and the use of modern
cryptography. There are no a priori trusted nodes, or any
reputation system, as that would raise considerably the en-
ergy requirements. Instead, the system allows the arbitrary
behavior of the nodes: a node may behave normally with
respect to routing in order to avoid being detected by the
IDS, but it can expose a malicious behavior to obstruct the
successful detection of another intruder node. We call such
nodes faulty. The IDS system is based on the power of the
magjority to protect itself from these misbehaving nodes.

We build the architecture of the IDS agent based on the
conceptual modules shown in Figure 2. Each module is re-
sponsible for a specific function, which we describe in the sec-
tions below. The IDS agents are identical in each node and
they can broadcast messages for agents residing in neighbor-
ing nodes.

7.1 Local Packet Monitoring Module

This module gathers audit data to be provided to the lo-
cal detection module. Audit data in a sensor networks IDS
system can be the communication activities within its radio
range. This data can be collected by listening promiscu-

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Neighboring

Cooperative IDS Agents
Detection Engine I

o Respenee ‘7@ c LOC?I t
ommunication

¢ A I
Alert Region > Multihop -
Communication

[Suspect(s)

Local Detection Engine

— Anomaly Misuse
| Detection Detection
Neighborhood 3

Traffic
NbPerimeter]_—*[ManaK;gment }

Figure 2: The IDS Architecture.

Local Packet

Monitoring

ously to neighboring nodes’ transmissions. By promiscu-
ously we mean that since another node is within range, the
data collection module can overhear communications origi-
nating from that node.

7.2 NbPerimeter Module

This module is responsible for maintaining consistent in-
formation about 1-hop and 2-hop neighbors of the nodes.
Information about 2-hop neighbors is needed because, as
we will see, the detection process involves the communica-
tion of the nodes which are neighbors of the (yet unknown)
attacker, but they might be 2-hops away from each other.
During an initialization phase that takes place immediately
after the deployment of the network, the NbPerimeter mod-
ule broadcasts the node ID and the IDs of the node’s imme-
diate neighbors within a packet that has a TTL field equal to
1, meaning that each packet will be forwarded just once by
the sender’s 1-hop neighbors. The discovered neighborhood
information is stored in a table, which we call the 2-hops
neighborhood table.

7.3 Key Management Module

After the deployment of the sensor network, the KeyMan-
agement module of the node generates a one-way key chain
of length n, using a pre-assigned unique secret key K,. A
one-way key chain [11] (Ko, K1, ..., Kn—1, Ky) is an ordered
list of cryptographic keys generated by successively apply-
ing a one-way hash function F' to the key seed K,, such
as Kj = F(Kj41), for j = n—1...0. Therefore, any key
K is a commitment to all subsequent keys K;, ¢ > 7. In
our implementation, SHA-1 hashing is used for the produc-
tion of the key chain. As the last step in the initialization
phase, the KeyManagement module in each node announces
the resulted Ky to all of its 1-hop and 2-hop neighbors.

The KeyManagement module also stores the corresponding
information for the neighboring nodes (up to 2-hops), i.e.
the node IDs and their keys. This information needs to re-

main consistent and up-to-date during the lifetime of the
network. So, the KeyManagement module updates the corre-
sponding key every time a node publishes a new one from
its key chain. But, also, the topology can change, as nodes
may be removed or added, and for that reason, the KeyMan-
agement module is linked with the NbPerimeter module and
is informed for the new or deleted nodes.

7.4 Local Detection Engine

This module collects the audit data and analyzes it ac-
cording to some given rules. A set of rules is provided for
each attack, and whenever one or more rules are satisfied,
a local alert is produced by the module. Whether a rule is
satisfied or not does not just depend on information from
the intercepted packets, but also on information from the 2-
hop neighborhood table or information from past observed
behavior.

As depicted in Figure 2, the LocalDetectionEngine incor-
porates both classes of intrusion detection techniques, i.e.,
misuse detection and anomaly detection. In misuse detec-
tion [8], the observed behavior is compared with known at-
tack patterns that may pose a security threat and the IDS
tries to recognize any “bad” behavior according to these pat-
terns. For example, if a node receives a packet sent by a
non-neighboring node, this clearly stands as an attack be-
havior.

However, it is not possible to cover all classes of attacks
with this technique [2]. That’s why some rules may be
expressed according to the anomaly detection technique.
Anomaly detection [9] first describes what constitutes “nor-
mal” behavior and then flags as intrusion attempts any activ-
ities varying from this behavior by a statistically significant
amount. The normal behavior can be based on manually de-
fined specifications that describe what a correct operation
is. For example, a small packet drop rate is an expected
phenomenon due to the wireless medium of communication.
However, if that rate rises above a threshold, it could be an
indication of (say) a selective forwarding attack.

The LocalDetectionEngine of a node s outputs an alert.
This alert can contain one of two things: either the node
ID of the attacker or a list of suspected nodes. In the first
case, the node detecting the attack was able to identify the
source (e.g. a node dropping packets), so it directs the alert
to the LocalResponseModule for immediate measures. In
the second case, it simply outputs some set Suspect(s) of
possible attacking nodes. Suspect(s) will contain a subset of
neighbors or may even be equal to the whole neighborhood of
s. In any case, it cannot contain any non-neighboring node,
since node s could not have observed an attack outside its
radio range. By communicating its list of suspected nodes
to the other nodes and collaborating with them is what can
lead to recognizing the attacker’s identity.

7.5 Alert Region Module

This module is activated only in the case where the Lo-
calDetectionEngine module was inconclusive on the iden-
tity of the attacker and a suspects list was produced. In this
case we call the node an alerted node. The set of alerted
nodes define an alert region. Since not every node that be-
longs to the alert region has to be within communication
range of each other, we need to define a communication ab-
straction intended to provide “connectivity” between them,
or else a “neighborhood relationship”. The AlertRegion

module is responsible of exactly that: to let each alerted
node find out about each other, so that they can form a
group and start communicating.

The construction of the alert region is dynamically formed
at the time of the attack and proceeds in iterations. Each
alerted node s broadcasts a short message, which we call the
alert message mq(s), in order to include itself in the alert
region. The payload of the message contains the node ID of
s. This message must reach all other alerted nodes. How-
ever, since not all of them are within 1-hop distance from
each other, all messages mq () should be forwarded by inter-
mediate nodes in order to reach 2-hop away alerted nodes.
The code is given in Algorithm 1.

Algorithm 1: The Alert Region Algorithm

Data: Node ID s being in alert mode
Result: Alert region vector AR
begin
Create mq, PLy,, = {[nodelD = §|};
Broadcast mg;
Set timer T = 71;
while T} (ezpired) do
if receive m, then
if mq.nodeID ¢ AR then
Forward my;
end
Add mg.nodelD in AR;
end

end
Call VotingAlgorithm();
end

The phase of the alert region construction lasts time 7
in each node. A node will enter this phase when it detects
the attack locally and produce the local alert. Therefore,
it’s not necessary that all nodes will enter this phase simul-
taneously, nor we require it. The value of the timer T} is
set experimentally so that all nodes have sufficient time to
exchange their alert messages and find out about each other.

Note that a faulty node (the attacker itself or a node col-
laborating with the attacker) may try to include itself in the
alert region. Since we don’t know the attacker a priori and,
as we said, we don’t require any reputation system to es-
tablish a trust relationship amongst the nodes, we have no
other choice but to accept this possibility. By the use of the
voting algorithm that we describe in the next section, we
cancel out the effect of the faulty nodes.

A faulty node can also choose not to forward an alert
message, in order to exclude an honest node from the alert
region. However, we expect that the original sender will have
at least one honest neighbor who will forward the packet and
it will eventually reach the 2-hop neighbors. But still, in the
case that there is only one path passing through the attacker,
it is not to the benefit of the attacker to drop messages, since
this will signify an instance of selective forwarding and the
attacker will be identified more easily.

7.6 Voting Module

The Voting module is responsible for executing the proto-
col of the voting phase, which follows after the construction
of the alert region. The goal of the voting phase is to have
the nodes collaborate and exchange their suspect lists (we
call them votes), so that they can agree on the identity of the

attacker. What is important here is to have honest nodes
receive the votes of the rest of the honest nodes in the alert
region and each vote is indeed the one transmitted by the
corresponding node.

To achieve this, we must ensure of two things. First, that
the votes of the honest nodes do not get lost, i.e. all honest
nodes receive all votes from the rest of the honest nodes.
This is possible because of the alert region that we con-
structed in the previous phase. Each node expects to receive
the votes from the rest of the nodes in the alert region. If
a vote gets lost, a node can request it and receive it (given
that it has at least one honest alerted neighbor). The second
thing to ensure is that the votes of honest nodes do not get
spoofed by intermediate faulty nodes. For this reason, each
node signs the votes using the next key from its key chain.

Algorithm 2: The Voting algorithm

Data: Node ID s being in the alert region
Result: Vector of collected votes
begin
Create m.,
PLy,, = {[nodeID = §|, Suspect(s), [TTL = 1]};
Sign m.(s) with the next key K; from the one-way
key chain,
my(s) = Suspect(s)||H (Suspect(s)||Kj;);

Set timer T = 7o;
while [T (ezpired)] €6 |[receive maqy from all
alerted nodes] do
if receive m, then
for i € m,.Suspect(s) do
if i ¢ Neighbors(m,.nodelI D) then
Discard m;
Break;
end
end
Store m.y;
if m,. TTL == 1 then
m,. TTL = 0;
Forward m.,;
end
end
if receive m, from all alerted nodes then
Create and broadcast mggy;
end
if [receive myeq | && [s in advertise mode] then
Forward the requested vote m.;
end
end
end

The detailed protocol of this phase is described in Algo-
rithm 2. Let us denote the message that bears the vote of
node s as my(s). Node s signs its vote with the next key K
from its one-way key chain

my(s) = Suspect(s)||H (Suspect(s)|| K;)

and sets the TTL field of the message equal to 1. After it
broadcasts this message, it sets a timer T> to expire after
time 72. During that time it expects the votes from the
rest of the alerted nodes. When it receives a vote, it first
checks that the suspect list included is consistent with the
neighbors of the initial sender. We need this check, in order

H_)@ T @ ¢ T > @
T T T
1 1 1
1 1 1
1 1 1
1 1 1
1 ol % 1 1
1 =] 1
5| 5| gl gl g g ¢ 3l 3
© © 18 > > 4 S 1 = !
1 © @ 1 1
1 © 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
T T T -
| U. , time
Alert Region i Voting i Publish Key !

Figure 3: Message exchange between two nodes
while they move through the phases of the protocol.
Clocks indicate timer interrupts that force passage
into the next phase.

to prevent a faulty node that has included itself in the alert
region from voting against arbitrary nodes. It then buffers
the received vote and forwards it if TTL=1. For the time
being it does nothing more with the votes it receives. It has
to wait for the key publishing phase that follows, in order
to authenticate the votes.

If votes from all 1-hop alerted neighbors have been re-
ceived, it broadcasts an advertisement message mgq,. This
will allow any neighboring node to request for a vote that it
may have missed. Thus, if a message mr.q is received, the
node forwards the corresponding vote again. This phase will
end if the timer 7> expires or the corresponding messages
Mady from all 1-hop alerted neighbors have been received.

The exchange of votes is optimized in terms of time. Votes
can be lost, either by collisions or bad links. However, each
node knows how many votes it should receive and by which
nodes. So, if a node receives all the votes, it advertises it
to its immediate neighbors and they request any votes that
they have missed. We allow enough time for this process by
setting a timer 7> to expire in time 72. If a vote gets lost
(not received by any node), the timer allows them to move
on to the next step of publishing their key and verifying the
authenticity of the received votes. On the other hand, if all
neighbors of a node (itself included) advertise that they have
received all the votes, there is no need to wait for the timer.
That node can move to the next phase (see Figure 3).

In the Publish Key phase each node broadcasts the next
key of its hash chain, K}, which was used to sign the vote.
When a node receives the disclosed key, it can easily verify
the correctness of the key by checking whether K; generates
the previous one through the application of F'. If the key is
correct, it replaces the old commitment K;_; with the new
one in its memory. Then the node can now use the key to
verify the signature of the corresponding vote stored in its
buffer. If this process is successful, it accepts the vote as
authentic.

Since a packet with the key can get lost, we need a third
timer, 73 as a “hard deadline” for receiving the keys. This
timer is initialized just after a node publishes its own key
and it’s set to expire at time 73. When all the keys from the
alerted nodes are received or the timer expires, the nodes
move to the final step of processing the votes. In the case
where a key has been missed, the corresponding vote is dis-
carded. The code for this phase is given in Algorithm 3.

Since nodes are not time synchronized, and some nodes
may start publishing their keys while others are still in the

voting phase, we need to consider “man in the middle” at-
tacks. When a node sends its vote, an attacker may withhold
it until that node publishes its key. Then it can change the
vote, sign it again with the new key, and forward it to the
next alerted node. Following that, the attacker also forwards
the key, and the receiver will be able to verify the signature
and accept the fake vote as authentic.

An explicit defense against this attack would be to require
the nodes to be loosely synchronized as in pTESLA[16].
Here, however, we have decided to keep things simple and
deal with this problem implicitly by relying on residual paths
amongst the nodes (although we plan to investigate the syn-
chronization approach and consider its possible benefits). As
votes are forwarded by all nodes, even if an attacker refuses
to forward a vote, it will arrive to the intended recipients
via other paths. In the unlikely case that there is only one
path passing through the attacker, dropping votes will sig-
nify an instance of selective forwarding and the attacker will
be identified more easily. Thus, it is not at its benefit to
modify/drop votes. Finally, in our algorithm, a node ac-
cepts a vote only while it has not publish its own key and it
has not received the key from the node that sends the vote.

Algorithm 3: The Publish Key algorithm

Data: Buffer of received votes
Result: Attacker’s ID
begin
Release key Kj;
Set timer T3 = 73;
while ![T3(expired)] &€ [receive K; from all
alerted nodes] do
if receive K; then
if Validate(K;) && Validate(m?) then

Store Kj;
end
else
Discard m;
end
end
end

Aggregate all validated m, to find the attacker’s ID;
end

Let us also stress that the length of the key chain is finite
and at some point all the available keys will have been used.
Older keys cannot be reused, since they have been revealed
by the nodes. Therefore, the nodes should be able to regen-
erate the key chain in a possibly compromised environment.
To do that we follow the following method: before the node
uses the last commitment, it creates a new hash chain and
broadcasts the new commitment authenticated with the last
unused key of the old chain. This essentially provides the
connection between the two chains and the alerted nodes
will be able to authenticate the votes as before.

When each alerted node has collected and authenticated
the votes from the other members of the alert region, it
will have knowledge of the corresponding suspect lists, itself
included. Then it applies a local operator on these lists,
which will produce the final intrusion detection result, i.e.
the attacker’s ID. In particular, it applies a count operator,
which counts the number of times each node i appears in the
suspect lists, or else the number of votes it collects. The node
with the majority of the votes is declared as the attacker and

its ID is passed to the LocalResponse module.

Since we assume the existence of t faulty nodes that col-
laborate with the attacker, we expect that they will have
included themselves in the alert region and voted in order
to affect the final result to the attacker’s benefit. The best
strategy for them would be to vote against a specific hon-
est node, hoping that it will collect more votes than the
attacker. If, however, there is a set of at least t + 1 hon-
est alerted nodes, the majority vote will still point to the
attacker.

7.7 Local Response Module

Once the network is aware that an intrusion has taken
place and have detected the compromised area, appropriate
actions are taken by the LocalResponse module. The first
action is to cut off the intruder as much as possible and iso-
late the compromised nodes. After that, proper operation
of the network must be restored. This may include changes
in the routing paths, updates of the cryptographic material
(keys, etc.) or restoring part of the system using redundant
information distributed in other parts of the network. De-
pending on the confidence and the type of the attack, we
categorize the response to two types:

e Direct response: Excluding the suspect node from any
paths and forcing regeneration of new cryptographic
keys with the rest of the neighbors.

e [ndirect response: Notifying the base station about the
intruder or reducing the quality estimation for the link
to that node, so that it will gradually loose its path
reliability.

IDS systems in other types of networks always report an
intrusion alert to a human, who takes the final action. Cor-
rectly, this approach is usually neglected in WSN IDS lit-
erature. Sensor networks should (and they actually are)
able to demonstrate an autonomic behavior, taking advan-
tage of their inherent redundancy and distributed nature.
Autonomic behavior means that any response to an intru-
sion attempt is performed without human intervention and
within finite time.

8. CASE STUDY: DETECTING SINKHOLE
ATTACKS

The architecture that we described in this paper is a gen-
eral architecture for detecting intruders in a sensor network.
In this section we take a closer look at an example of how
this schema can be used to detect a specific attack, namely
the Sinkhole attack. We use this example to show how the
Local Detection module generates alerts based on the mes-
sages that it monitors and which rules one should built to
analyze these messages.

In a Sinkhole attack [10] a compromised node tries to draw
all or as much as possible traffic from a particular area, by
making itself look attractive to the surrounding nodes with
respect to the routing metric. As a result, the adversary
manages to attract all traffic that is destined to the base
station. By taking part in the routing process, she can then
launch more severe attacks, like selectively forwarding, mod-
ifying or even dropping the packets coming through.

In this example we concentrate on MintRoute [19], which
is the standard routing algorithm of TinyOS [7]. MintRoute

uses link quality estimates as the routing cost metric to build
the routing tree towards the base station. For the calculation
of these link estimates, each node periodically transmits a
packet, called “route update”. Each node estimates the link
quality of its neighbors based on the packet loss of the route
update packets received from each corresponding neighbor.
The list of these estimates for each neighbor is broadcasted
by the node periodically in its own route update packets.

In the case of a routing protocol like MintRoute, the com-
promised node launching the sinkhole attack will try to per-
suade its neighbors to change their parents and choose the
sinkhole node as their new one, by trying to make these par-
ents look like they have much worse link quality than itself.
One method to achieve this is to change the link quality es-
timates sent by the nodes, within the route update packets.

To do that, the attacker listens to the route update mes-
sages from its neighbors, alters them and replays them im-
personating the original sender. Even if there is an under-
lying key mechanism that nodes can use to communicate
securely with each other, most probably the attacker will be
using a broadcast key shared with the nodes to be able to
overhear change and send these packets.

In order to detect the sinkhole attack we add a rule that
will trigger an alert whenever the malicious node tries to
impersonate another node, according to the attack we de-
scribed above. The intuition is that route update packets
should originate only from their legitimate sender and the
nodes should defend against impersonation attacks.

Rule: “For each overhead route update packet check the
sender field, which must be the node ID of one of your neigh-
bors. If this is not the case, produce an alert and broadcast
it to your neighbors.”

Note that a node, which detects an anomaly according to
the above rule, can infer the existence of an attacker, but
it has not enough information to conclude on the attacker’s
identity, since the sender field of the packet is altered. The
only conclusion it can draw is that the attacker is one of
the neighboring nodes, since the route update packets are
only broadcasted locally. Then, the node needs to rely on
the cooperative detection engine described in this work, in
order to reduce the candidates down to one node.

9. IMPLEMENTATION

In this section, we present experimental results from our
implementation of the IDS system described in this paper.
The goal is to show a framework that actually works on
the motes, and can be used as a reference point. Moreover,
it will become clear to the reader that such a system for
sensor networks is lightweight enough to be a viable and
realistic solution from implementation and real deployment
perspective.

The current development of the IDS protocol builds on
Moteiv Telos motes - a popular architecture in the sensor
network research community. It features the 8 MHz TI
MSP430 micro-controller and a 16-bit RISC processor that
is well known for its low energy consumption. Yet, even
though the implementation is tested on the Telos motes, all
the components are designed with adequate generality, such
that porting them to different sensor platforms should yield
similar performance results.

9.1 Memory Requirements

The memory footprint of the LIDeA architecture is an im-

portant measure of its feasibility and usefulness on limited
memory constrained sensor nodes. The total memory foot-
print is composed of the memory footprint of the compiled
code, which is present in ROM, and the memory footprint
of the data memory required to run the code. An IDS sys-
tem for constrained devices must be compact in terms of
both code size and RAM usage, in order to leave room for
applications running on top of the system. Table 1 lists the
memory footprint of the LIDeA modules, compiled for the
MSP430 microcontroller.

Table 1: Size of the compiled code, in bytes.

Module RAM usage | Code Size
NbPerimeter 136 968
Key Management 318 3764
Alert Region 94 766
Voting 260 4548
Total 808 10046

The largest module in terms of RAM footprint in Table
1 is the Key Management module. This is because the Key
Management module contains statically allocated tables for
the neighbors and their keys. In terms of ROM, the largest
module is the Voting module, since it has the most lines of
code. In total, the IDS consumes 808 bytes of RAM and
10, 046 bytes of code memory. This leaves enough space in
the mote’s memory for user applications. For example, the
total RAM available in Telos motes is 10 KB.

9.2 Experiments

To evaluate the performance of the implementation of the
IDS, we tested it in a real environment. In particular we
deployed several nodes in random topologies on the floor of
an office building. We set a node to be the “attacker” and we
gradually incremented the number of its neighbors to form
larger alert regions. For each alert region size, we repeated
the experiment for 20 different random topologies. The
experiments were performed by having the motes running
a typical monitoring application. In particular we loaded
the Delta application, where the motes report environmen-
tal measurements to the base station every 5 seconds. We
also deployed the MultihopLQI protocol at the routing layer,
which is an updated version of the MintRoute protocol [19]
for the Chipcon CC2420 radio. We tuned it to send control
packets every 5 seconds. Our goal is to demonstrate how
well the IDS will function, even under the presence of traffic
on other layers. Then we simulated an attack to trigger the
IDS protocol.

Figure 4 depicts the communication cost of the protocol
measured in packets sent by a node. In particular, we broke
it down to the packets exchanged for the alert region phase
and the voting phase (as a total of exchanging the votes,
ADV, REQ and keys). For small alert region sizes the cost
is only about 12 packets, while for more dense regions the
cost still remains low (21 packets). This is the total commu-
nication cost per attack and involves only the nodes in the
alert region. It is also measured as a mean time averaged
on different random topologies. The number of packets de-
pends on the topology and the number of nodes in the alert
region, as these parameters determine the number of alert
messages, votes and keys circulated amongst them.

25

W Voting
W Alert Region

20
15
10
5
0 : ‘ ; ;
4 5 6 7 8

Alert Region Size

Packets Sent

Figure 4: Measured communication cost for differ-
ent sizes of the alert region.

12000 1
11000 4 |2 Publish Key
OAdv |
10000 -)
M| Voting
9000 | g Ajert Region
8000 -
@ 7000 -
£
o 6000
£
= 5000
4000 A
3000 -
2000 -
1000 -
[T T T T
4 5 6 7 8

Alert Region Size

Figure 5: Detection time for different sizes of the
alert region.

Next we measured the time that each phase of the IDS
protocol required, i.e., the alert region formation, and the
voting phase. We break the latter down to three smaller
phases, to make it more transparent: the exchange of the
votes along with possible requests (Voting), the exchange of
the ADV messages and finally the publication of the keys
along with the authentication of the votes and the compu-
tation of the final result (Publish Key). Figure 5 shows the
measured mean times for each of the above phases, for dif-
ferent alert region sizes (i.e. attacker’s neighborhood).

What we can infer from Figure 5 is that the times for the
first three phases have small deviations as the alert region
size increases, and constitute a small overhead from the to-
tal time. The most time-consuming phase is the last one of
exchanging the keys and verifying the votes. To get a better
insight of this, we measured the time needed for the com-
putational operations within this phase. In particular, the
time a node needs to authenticate each received key (i.e., to
check if the hash of the new key matches with the previous
one) is approximately 15ms. The validation of the signature
of the vote takes about 25ms and the aggregation of the re-
ceived vote with the rest in order to produce the final result
takes 150ms. For the construction of its own vote, a nodes

o Signature Validation
Key Authentication (3%)

(2%)

Aggregation of Votes
(16%)

Vote Construction
(6%)

Vote Signature

Communication (3%)

(70%)

Figure 6: Costs of computation and communication
in terms of time for the Publish Key phase.

needs 60ms and signing it with its key takes 25ms.

Figure 6 expresses the percentage of costs for computa-
tion and communication for this phase. We can conclude
that most of the overhead arises from the transmission of
data rather than from any computational costs. This over-
head for the communication is due to the inherent inability
of TinyOS to receive the next packet before finishing the
processing of the current one. In our implementation, upon
receiving a key, the node has to verify it is a valid one be-
fore accepting it. To save memory space, we don’t buffer
the key for later processing, but rather we authenticate it
on the fly. Meanwhile, TinyOS cannot receive the next key.
That’s why we had to include a random delay so that nodes
publish their keys in different time instances. This delay, al-
though experimentally minimized, contributes significantly
to the results of Figure 6.

It is also important to see how the behavior of the IDS is
affected by the traffic introduced by the application layer.
That is, if the application needs to increase the data rate
of the information routed in the network, the bandwidth
that remains for the communication of the IDS agents de-
creases. We performed experiments to see how this affects
the detection delay. In particular, we gradually increased
the data rate of the Delta application. In Delta, each sen-
sor node reports measurements periodically sending a packet
to the base station. Delta is based on the MultihopLQI at
the routing layer, which broadcasts route update packets
periodically to maintain the routing tree. We tuned Multi-
hopLQI to send a route update packet every 5 seconds and
experimented with different data rates for Delta. For the
MAC layer we used the default in TinyOS, i.e., the CSMA
protocol.

Figure 7 shows the detection delay of the IDS as the ag-
gregative data rate of packets at the routing and application
layers increases. This increase actually corresponds to dif-
ferent packet rates of Delta (1 packet every 1, 3, 5 and 10
seconds), as the rate of the route update packets was fixed.
The alert region size was set to 6 nodes throughout the ex-
periments. As we see from the figure, for an increase of 300%
in the data rate (from 34.8 bps to 139.2 bps) the detection
delay is increased only by 1.6 seconds. As more and more
packets are sent and received from the nodes, a delay to ex-
change the necessary packets for the intrusion detection is
unavoidable, due to the CSMA back-off waiting time. We
believe that a better MAC layer protocol would drop this
delay further.

10000 1

OPublish Key
9000 | OAdv

W Voting
8000 | mAlert Region

7000

6000 -

5000 -

Time (ms)

4000 1

3000 -

2000 -
1000 J
[T

34,8 46,4 61,9 139,2
Data Rate (bps)

Figure 7: Behavior of the detection process under
the presence of traffic on other layers.

10. CONCLUSIONS

In this work, we discussed the problem of intrusion de-
tection in sensor networks that uses a large number of au-
tonomous, but localized, cooperating agents in order to de-
tect an attacker. The nodes use coordinated surveillance
by incorporating inter-agent communication and distributed
computing in decision making to collaboratively infer the
identity of the attacker from a set of suspicious nodes.

The IDS system we discussed is novel but most impor-
tantly realistic, considering the current state of the art in
wireless sensor networks. The demonstrated implementa-
tion details show that it is lightweight enough to run on
sensor nodes, in terms of communication, energy, and mem-
ory requirements. We are currently working on making the
system more robust against desynchronization and message
loss, by considering the use of an ADV-REQ scheme. In
general we believe that studying the problem of intrusion
detection in sensor networks is a viable research direction
and with further investigation it can provide even more at-
tractive solutions for securing such types of networks.

11. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the
quality of this paper.

12. REFERENCES

[1] F. Anjum, D. Subhadrabandhu, S. Sarkar, and
R. Shetty. On optimal placement of intrusion detection
modules in sensor networks. In BROADNETS ’0/:
Proceedings of the First International Conference on
Broadband Networks, pages 690-699, 2004.

[2] S. Axelsson. Intrusion detection systems: A survey
and taxonomy. Technical Report 99-15, Chalmers
University of Technology, March 2000.

[3] V. Bhuse and A. Gupta. Anomaly intrusion detection
in wireless sensor networks. Journal of High Speed
Networks, 15(1):33-51, 2006.

[4] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. J. ACM,
43(2):225-267, 1996.

[5] A. P. da Silva, M. Martins, B. Rocha, A. Loureiro,

L. Ruiz, and H. C. Wong. Decentralized intrusion

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

detection in wireless sensor networks. In Proceedings
of the 1st ACM international workshop on Quality of
service & security in wireless and mobile networks
(Q25Winet ’05). ACM Press, October 2005.

M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374-382, 1985.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. ACM SIGPLAN Notices, 35(11):93-104, 2000.
K. Ilgun, R. A. Kemmerer, and P. A. Porras. State
transition analysis: A rule-based intrusion detection
approach. Software Engineering, 21(3):181-199, 1995.
H. S. Javitz and A. Valdes. The NIDES statistical
component: Description and justification. Annual
report, Computer Science Laboratory, SRI
International, Menlo Park, CA, March 1994.

C. Karlof and D. Wagner. Secure routing in wireless
sensor networks: Attacks and countermeasures. AdHoc
Networks Journal, 1(2-3):293-315, September 2003.
L. Lamport. Password authentication with insecure
communication. Communications of the ACM,
24(11):770-772, 1981.

C. E. Loo, M. Y. Ng, C. Leckie, and M. Palaniswami.
Intrusion detection for routing attacks in sensor
networks. Int. J. of Distributed Sensor Networks, 2005.
S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating
routing misbehavior in mobile ad hoc networks. In
Proceedings of the 6th International Conference on
Mobile Computing and Networking (MobiCom ’00),
pages 255-265, August 2000.

I. Onat and A. Miri. An intrusion detection system for
wireless sensor networks. In Proceeding of the IEEE
International Conference on Wireless and Mobile
Computing, Networking and Communications,

volume 3, Montreal, Canada, August 2005.

M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. Journal of the
ACM, 27(2):228-234, 1980.

A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and

D. E. Culler. Spins: security protocols for sensor
networks. Wirel. Netw., 8(5):521-534, 2002.

R. Roman, J. Zhou, and J. Lopez. Applying intrusion
detection systems to wireless sensor networks. In
Proceedings of IEEE Consumer Communications and
Networking Conference (CCNC ’06), pages 640-644,
Las Vegas, USA, January 2006.

E. W. Vollset and P. D. Ezhilchelvan. Design and
performance-study of crash-tolerant protocols for
broadcasting and reaching consensus in MANETSs. In
SRDS ’05: Proceedings of the 24th IEEE Symposium
on Reliable Distributed Systems, pages 166—-178, 2005.
A. Woo, T. Tong, and D. Culler. Taming the
underlying challenges of reliable multihop routing in
sensor networks. In SenSys ’03: Proceedings of the 1st
international conference on Embedded networked
sensor systems, pages 14-27, 2003.

W. Wu, J. Yang, and M. Raynal. Design and
performance evaluation of efficient consensus protocols
for mobile ad hoc networks. IEEE Trans. Comput.,
56(8):1055-1070, 2007. Senior Member-Jiannong Cao.

