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Abstract. In this chapter we elaborate on the need for security frameworks at the
link-layer and describe what services they provide to the upper layers. We review
the proposed frameworks in the bibliography and discuss about their pros and cons.
Then we present in more detail the design and implementation of one of them, the
L3Sec framework, in order to show what issues arise in such a process and how
they can be solved. Some of these features include providing acceptable resistance
against node capture attacks and replay attacks, as well as the run-time composi-
tion of security services in a completely transparent way. The framework is able
to satisfy its requirements based on an an efficient scalable post-distribution key
management scheme, which we also present.
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Introduction

The different directions of ongoing research in WSNs are based on security challenges
that address several classes of attacks and how sensor networks can defend against them.
Another, more general approach to address security in WSNs can be on a per-layer basis,
instead of a per-attack basis. Under this perspective, security protocols can be designed
to provide security in a particular layer and cooperate with security protocols in other
layers to compose a complete defence for the nodes and the network.

This layer based classification of security protocols can help towards a more clear
understanding of WSN security and better protocol design. However, in practical sensor
networks, such as those using the TinyOS platform, there does not exist a clear formal
way for demarcating between the various layers. Nevertheless, one could break the net-
work stack in TinyOS into four major layers: the physical layer, the link/MAC layer (in
the remainder of this chapter we will refer to this simply as the link layer), the routing
layer, and the application layer.

On this basis we could range security protocols in a corresponding layered taxon-
omy, as shown in Figure 1 [1]. Protocols in higher layers use security services provided
by lower layers or depend on their reliable functionality. There are also other security
issues like intrusion detection that cannot be classified in this layered approach as they
are more general problems that spam different layers. Currently, research on security
solutions for WSNs has focused mainly in the following three categories:
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Figure 1. Sensor networks security map based on a layered approach.

1. Key management: A lot of work has been done [2] in establishing cryptographic
keys between nodes to enable encryption and authentication. These protocols can
be classified as link layer protocols.

2. Authentication and Secure Routing: Several protocols [3] have been proposed to
protect information from being revealed to an unauthorized party and guarantee
its integral delivery to the base station. These protocols clearly belong to the
routing layer.

3. Secure services: Certain progress has been made in providing specialized secure
services, like secure localization [4], secure aggregation [5] and secure time syn-
chronization [6]. These services are closer to the application layer.

Historically speaking, research in WSN security first focused on key management, as
it is the most basic requirement for providing further security services. Another area that
attracted a lot of research work was secure routing, but the solutions given either targeted
a specific routing protocol or confronted only a narrow class of attacks. Also a lot of effort
has been made to provide specialized secure services, but as network and application
protocols continued to flourish, security researchers realized that more general solutions
were needed to address the diversity of these protocols. As a result, attention gradually
turned to lower layers of the protocol stack, notably the link layer.

What makes link-layer security important is that end-to-end security mechanisms
are not possible in sensor networks, so more transparent mechanisms provided by the
link layer are needed. Protocols used in conventional networks for end-to-end security,
such as SSH [7], SSL[8], or IPSec[9], even though they are feasible in constrained em-
bedded devices [10], they are considered inappropriate since they don’t allow in-network
processing and data aggregation which play an important role in energy-efficient data
retrieval. These operations require the intermediate nodes to access and possibly modify
the contents of packets, which would not be possible if an end-to-end security scheme
was used.

In sensor networks it is also important to allow intermediate nodes to check message
integrity and authenticity, or else the network would be prone to several denial of service
attacks. Using an end-to-end security mechanism, packets would have to be routed all
the way to the base station before these checks could be performed, since the interme-
diate nodes do not have the keys to verify their authenticity and integrity. On the other



hand, using a transparent security mechanism at the link layer, malicious packets can be
identified and rejected at the first hop.

However, since the usual traffic pattern in WSN is many-to-one, pre-loading one-to-
one keys between two sensors and refreshing the keys are practically impossible tasks.
Public key cryptography is also considered to be computationally expensive for WSN
and therefore, light-weight, yet reasonably secure key management schemes are crucial
in order to bring about acceptable security services in WSN. In addition to this, any WSN
security protocol has to be flexible and scalable enough to easily allow nodes to join or
leave the network.

In the rest of this chapter we first emphasize on the main issues involved in designing
link-layer security protocols. In Section 2, we review some of the proposed protocols in
the bibliography by describing in some detail their design and implementation. Then, in
Section 3 we describe a flexible and scalable post-distribution key management module
which provides basic cryptographic services and explain how this module can be easily
merged with other components and used to secure different operations at different layers.
Finally, we describe a security framework based on this module and present several of
its implementation details under TinyOS [11], a popular component-based event-driven
operating system for WSN.

1. Providing Security at the Link Layer

In this section we describe what features a link layer security protocol provides to other
protocols in higher layers. Different protocols that we are going to review in Section
3 use different approaches to provide these features, but here we describe the common
directions that they all follow and what issues exist for them to solve.

1.1. Data Confidentiality

Data confidentiality is one of the most basic security primitives and it is used in almost
every security protocol. The standard approach for providing confidentiality is to encrypt
the data with a secret key that only intended receivers possess. However, even though
there are studies [12,13,14,15] indicating that protocols using optimized software im-
plementations of public-key cryptography may be viable on small wireless devices, cur-
rently most of the security protocols use symmetric key encryption methods for their
power consumption efficiency.

Symmetric encryption schemes to be used in sensor networks can be chosen from
stream ciphers (RC4), block ciphers (DES, AES, RC5, and Skipjack) or hashing tech-
niques (SHA-1, MD5). A comparison [16] of encryption overhead amongst schemes
from the above groups implemented in embedded architectures showed that RC4 out-
performs RC5 on encryption and that hashing techniques require almost an order of a
magnitude higher overhead. However, block ciphers are the most widely used schemes
in sensor networks because they offer code size optimization, i.e. they can be used both
for encryption and authentication. Sensor nodes need to implement a block cipher in any
case, in order to provide message authentication, so using it for encryption also, con-
serves code space. This is why, as we will see, all the protocols reviewed in the remaining
sections use a block cipher.



1.2. Data Authentication

Data authentication allows the receiver to verify that the data was actually sent by the
claimed sender and not injected in the network by an adversary. It is most often achieved
using a message authentication code, or MAC. When the sender and the receiver share
a secret key, the sender can compute a MAC of the data to be sent and embed it in the
packet. If a packet with a correct MAC arrives, the receiver knows that it must have been
sent by the sender and has not been modified in transit.

The most common MAC scheme is CBC-MAC which uses some underlying block
cipher to encrypt the base data and then takes the last encrypted block as the MAC value.
CBC-MAC is secure for fixed-length messages, given that the underlying block cipher
is also secure [17]. However, by itself, it is not secure for variable-length messages. In
this case, the messages must be padded to a multiple of the cipher block size. One way
to handle this is through the method known as ciphertext stealing, which for the case of
sensor networks means that the nodes will need to spend energy for transmitting extra
bits. To avoid this problem, some protocols in sensor networks use other block cipher
modes, like OCB and CTR, in which the size of the ciphertext is exactly the size of the
plaintext and not a multiple of the block size.

1.3. Semantic Security

Semantic Security ensures that an eavesdropper can gain no information about the plain-
text, even after observing multiple encryptions of the same plaintext. One common
method of achieving this, using a block cipher, is to use a random value or a counter as
an Initial Vector (IV) in the encryption function, so that sending the same message will
never result in the same ciphertext. However, these IVs would have to be transmitted
with the packet, which would consume bandwidth and increase power consumption.

One method used by some protocols is the use of a shared counter between the
sender and the receiver which is used as the IV for the block cipher. If both sides incre-
ment this counter for each message, the counter does not need to be sent with the mes-
sage. However, this creates synchronization problems between the nodes, which leads to
the need of spending additional energy for re-synchronization.

Another issue here is that when using a counter in the IV it will eventually reset
itself and the same value will have to be used again, which means the IV will be the same
unless the key has been changed in the mean time. If the counter is to be transmitted
with the packet, the counter cannot be a lot of bytes which means it will wrap around
sooner. On the other hand, if the shared counters approach is used then the counters are
not transmitted and thus they can be longer offering better security.

1.4. Run-time Composition of Security Services

Some link-layer security protocols provide the possibility to choose which of the security
features described above will be actually offered. Since each one comes with an extra
cost, it might not always be desirable to apply all the options in all cases. So, for example
one may want to offer authentication only, but no encryption or replay attack protection.
That depends of the risk analysis and the desirable security level for the sensor network.
A security framework should implement all of them but it can also offer a mechanism to
the user for including or excluding security features.
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Figure 2. Relationship between components in TinySec.

2. Existing Link-Layer Security Protocols

In this section we review some of the proposed link-layer security frameworks for sensor
networks. To facilitate their evaluation we first introduce some requirements based on
the discussion in Section 1. Then, during the review of each protocol we will elaborate
on whether and how it satisfies these requirements.

• Flexibility: Various security services should be supported but not imposed to the
application level communications. This means that the run-time composition of
security services (see Section 1.4) should be provided.

• Scalability: Adding or deleting nodes should have minimum overhead in terms
of energy consumption and memory usage as well as having no effect on the
functionality of the security scheme.

• Transparency: The provision of security services should be transparent to other
components or services.

• Lightweightness: The constrained resources of sensor nodes especially limited
memory and computational power should be taken into account.

• Node Capture Resistance: The effects of node capture attacks should be con-
strained as much as possible. If a node is compromised it should not allow the
attacker to disclose the communication in the whole network.

• Simplicity: The integration of this scheme with other services or components
should have a minimal overhead.

2.1. TinySec

TinySec [18] is a link-layer security architecture for wireless sensor networks that is part
of the official TinyOS release. It generates secure packets by encrypting data packets us-
ing a group key shared among sensor nodes and calculating a MAC for the whole packet
including the header. It provides two modes of operation for communication namely, au-
thenticated encryption and authentication only. Authentication only is the default mode
of operation, where the payload in the TinyOS packet is not encrypted; each packet is
simply enhanced with a MAC. In the authenticated encryption mode the payload is en-
crypted before the MAC is computed on the packet. The key distribution mechanism
was left out and must be implemented as a separate part of the software. The TinySec
architecture is shown in Figure 2.
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2.1.1. Encryption and Authentication

TinySec uses a block cipher algorithm for its encryption scheme that is also used for
the message authentication code (MAC) resulting in greater code efficiency. In particular
the authors chose the Skipjack block cipher in cipher block chaining (CBC) mode for
encrypting TinyOS packets. However, instead of a random IV, they used a counter, which
is pre-encrypted. They also used the cipher stealing technique to ensure the ciphertext is
the same length as the underlying plaintext. For the authentication of packets, TinySec
uses the same block cipher encryption in CBC-MAC mode to generate a 4 byte Message
Authentication Code (MAC) for each message. To provide additional security, it XORs
the encryption of the message length with the first plaintext block.

2.1.2. TinySec packet format

Figure 3 shows the packet formats for the two modes of TinySec, authenticated en-
cryption (TinySec-AE) and authentication only (TinySec-Auth). As observed, the header
fields do not get encrypted, to allow motes quickly determine whether they should re-
ject the packet. The destination address and the AM type are used by the motes for this
purpose.

To detect transmission errors, TinyOS motes compute a 16-bit cycle redundancy
check (CRC) over the packet. At the receiver the CRC is re-computed and verified with
the CRC field in the packet. If they are equal, the receiver accepts the packet and re-
jects it otherwise. However, CRCs provide no security against malicious modifications
or forgery of packets. TinySec replaces the CRC and the GroupID fields with a 3-byte
MAC. The MAC protects the payload as well as the header fields. So, since the MAC can
detect any changes in the packet, it can also detect transmission errors, therefore CRC is
no longer needed.



In the TinySec-AE mode, the data field (payload) is encrypted by the block cipher in
CBC mode. Then the MAC is computed over the encrypted data and the packet header. In
order to reduce overhead, TinySec uses an 8 byte IV, which is composed of all the header
fields in Figure 3(c). In this case the overhead is only 4 bytes, i.e. the source address and
a 16-bit counter. This raises an issue on the security level due to the repetition of the IV
value. Since the counter is 16 bits, a node can send 216 packets before IV reuse occurs.
However, when this happens, only the length (in blocks) of the longest shared prefix of
the two repeated messages will be revealed, since CBC mode is used.

2.1.3. TinySec limitations

TinySec by default relies on a single key manually programmed into the sensor nodes
before deployment. This network-wide shared key provides only a baseline level of se-
curity. It cannot protect against node capture attacks. If an adversary compromises a sin-
gle node or learns the secret key, she can gain access on the information anywhere in
the network, as well as inject her own packets. This is probably the weakest point in
TinySec, as node capture has been proved to be a fairly easy process [19]. As we will
see in later sections, more recent link-layer security protocols have used stronger keying
mechanisms to deal with node capture attacks.

Another limitation of TinySec is that messages of less than 8 bytes are not addressed
efficiently. This is because TinySec uses a k-byte block cipher to encrypt the message.
For longer messages CBC mode is chosen that encrypts the message block by block.
But it is not so unusual for a message (i.e. the payload of the TinyOS packet) to be less
than 8 bytes, in which case TinySec will cause a ciphertext expansion, because ciphertext
stealing requires at least one block of ciphertext. This kind of ciphertext expansion would
cause extra communication power cost when sending data with variable length.

2.2. SenSec

SenSec is a link layer security platform similar to TinySec but with a slightly different
packet type and a more resilient keying mechanism. The provision of security services is
transparent so that the applications running on the sensors are not aware of the operations
on encryption and authentication taking place at the link layer.

While TinySec offers the option between authentication-only and authentication
with encryption (AE), SenSec has only one default mode: authentication with encryp-
tion. SenSec uses an 8 byte initial vector (IV) and a block cipher in cipher block chaining
(CBC) mode to encrypt the data field of the packet, just like TinySec in AE mode. Their
difference, however, comes from the IV format. The fixed portions of both IVs are the
destination address, the AM type and the length fields. These fields take 4 bytes totally.
TinySec fills the other portions of its IV with a 2 byte source address and a 2 byte counter.
While this is a reasonable solution so that IV is not repeated often, it requires the nodes
to maintain a counter that increases both storage and computation cost. In order to avoid
the cost of using a counter mode, SenSec employs a random number mode to generate a
three byte random number and fills the IV field with that number along with the one byte
group ID.

Instead of generating random numbers with a new algorithm, SenSec employs the
existing block cipher module that uses as the main security primitive in its architecture.
For simplicity, the first random number is generated by encrypting the first packet header
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with 3 byte random number field set to 0. Then, the three least significant bytes of the
ciphertext are used to fill the random number field in the packet. For the next packets, the
3 byte random number field is determined from the 3 least significant bytes of the MAC,
which is computed and stored during the previous packet formatting.

There have been slight enhancements in the cryptographic primitives used in SenSec
to improve the security of the platform and further reduce the energy consumption. While
80-bit key Skipjack block cipher is used as the encryption primitive in TinySec, SenSec
uses a variant of Skipjack called Skipjack-X which is more resilient against exhaustive
key search attacks. It has been shown that SkipjackX is as secure as Skipjack with re-
spect to the various attacks such as the differential cryptanalysis and linear cryptanalysis.
Furthermore, it proves stronger against brute force attacks which are the most practical
attacks against many block ciphers with small key sizes.

The computation cost of the encryption and MAC is also reduced in SenSec. While
TinySec requires two block cipher operations for each message block in a two-pass
authentication-encryption scheme, SenSec uses a one-pass authentication-encryption
scheme called XCBC. This scheme is secure as long as the total amount of packets being
encrypted and authenticated with the same key is much less than 232. Also, similar to
TinySec, SenSec uses 32 bit MACs in order to reduce the packet size.

The default XCBC mode in SenSec, carries out the encryption and authentication for
every packet. The reason that SenSec designers have chosen XCBC as their default mode
is that it causes the encryption to be done without additional cost, while the encryption
in TinySec needs separate CBC-mode operations.

2.2.1. SenSec Packet Format

SenSec’s packet format is built upon the current TinyOS packet format and improves
slightly upon the TinySec packet format. Figure 4 illustrates the packet format used in
SenSec. Compared with TinySec, the unchanged fields in SenSec are the destination
field, the active message type and the length field. Unlike TinySec, SenSec keeps the
Group ID field, which is also contained in the original TinyOS packet format.

2.2.2. SenSec’s Keying Mechanism

In a wireless sensor network, different packets are exchanged between different entities
(e.g. sensor to base station, sensor to gateway, etc.). These packets might have different
security requirements. For example sensor readings forwarded to the base station need
confidentiality and authentication, while routing packets need authentication only. A sin-
gle keying mechanism such as TinySec’s cannot satisfy all these requirements and there-
fore, designers of SenSec use a many-keying mechanism to protect the whole network
from various attacks on one hand, and on the other hand to support effective sensor func-
tions like in-network processing. SenSec employs three level of keys, namely global key



(GK), cluster key (CK) and sensor key (SK) to map the sensor deployment. All of the
keys are generated and pre-loaded before deployment.

SenSec’s keying mechanism provides some partial resilience against node capture
attacks compared to TinySec: if a sensor node is compromised, an adversary can only
disclose the group communication of that node through the cluster key, CK. She can also
broadcast messages to the network using the global key, GK. But still its node capture
resilience is better than that provided by TinySec, which uses only one network-wide
shared key.

2.3. SNEP

SNEP (Sensor Network Encryption Protocol) is a building block of SPINS [20] that
provides data confidentiality, two-party data authentication, integrity, freshness, seman-
tic security and replay protection. SNEP uses symmetric cryptography with one crypto-
graphic function (RC5) for all of the encryption, decryption, MAC, pseudo random num-
ber generation and hash function operations. In order to prevent any potential interaction
between the cryptographic primitives that might introduce a weakness, SNEP derives
independent keys for its encryption and MAC operations.

SNEP employs the CBC-MAC scheme to construct message authentication codes.
For the underlying block cipher it uses RC5. SNEP also offers semantic security by
randomization. In order to avoid the extra overhead of sending the randomized data with
the packet, it introduces a shared counter between the sender and the receiver which is
used as an initialization vector (IV) for the block cipher in counter mode (CTR). Since
the counter state is kept at each end point it is not required to be transmitted over the
radio channel. The counter value is long enough that it never repeats within the lifetime
of the node. This counter value in the MAC also prevents replaying old messages as
any messages with the old counter values would be discarded by the device. However,
since the counter value is not being sent with the packet, there might be synchronization
problems caused by dropped packets. So a re-synchronization protocol may be needed
to overcome this problem.

2.4. MiniSec

MiniSec has two different operating modes for unicast and broadcast communication be-
tween sensor nodes, called MiniSex-U and MiniSec-B respectively. Both schemes em-
ploy the OCB-encryption scheme for both encryption and authentication. They also pro-
vide semantic security by the use of a counter as a nonce. In the case of the unicast mode
two synchronized counters are kept at the sender and at the receiver, while in the broad-
cast mode the authors propose the use of a Bloom-filter2 based mechanism that precludes
per-sender state.

2.4.1. MiniSec-U

In unicast mode, MiniSec requires each pair of nodes in the network to share two keys:
KAB and KBA for A → B and B → A communication, respectively. A 32-bit counter

2A Bloom filter is a space-efficient probabilistic data structure that is used to test whether an element is a
member of a set. False positives are possible, but false negatives are not.



that is increased for each new message is assigned to each key to guarantee semantic
security. Counter CAB is used for key KAB and counter CBA for key KBA. Only the
last x bits of the counter value are included in each packet to save the energy of trans-
mitting more bits. Both sender and receiver keep track of the counters which have to be
synchronized on both sides. The receiver can accept only messages with a counter value
greater than this in the previous messages. However the counters can be desynchronized
and a counter resynchronization protocol is needed.

Unless it is known before deployment which pairs of nodes are going to use unicast
communication, each node in the network should maintain a counter for each possible
sender (i.e. its neighbors), resulting in high memory overhead and making counter resyn-
chronization very expensive. These problems also dictate the use of a different mecha-
nism for the broadcast case.

2.4.2. MiniSec-B

Two mechanisms are used in MiniSec-B to provide semantic security and replay protec-
tion. The first one requires time synchronization among the nodes and divides time in
epochs E1, E2, E3, . . .. The number of the current epoch is used as the nonce for OCB-
encryption. When a node receives a packet, it attempts decryption twice; one with the
current epoch number and one with the immediately previous epoch number. The epoch
length is defined in a way that compensates for time synchronization errors and network
latency.

The second mechanism defends against replay attacks within the current epoch.
Each sender nodes keeps a counter which is incremented for each new message. At the
end of each epoch the counter is reset, which means it can be shorter than the counter in
MiniSec-U (the authors found that it was sufficient to use an 8-bit counter). The receiver
keeps two alternating Bloom filters, one for the current epoch and one for the previous
epoch. Each time it receives a packet it queries the corresponding Bloom filter and if the
query returns true, the packet is considered to be a replay. The problem, however, is that
the Bloom filters may cause false positives, causing a legitimate packet to be rejected as
a replayed packet.

2.4.3. MiniSec packet format

Figure 5 shows the packet formats for MiniSec-U and MiniSec-B compared to the
TinyOS packet format for the CC2420 radio (compliant with IEEE 802.15.4). Like
in TinySec, the Group ID has been removed from the header, since access control is
achieved through the use of different cryptographic keys. The 2-byte CRC is replaced
by a 4-byte MIC (Message Integrity Code). The difference between MiniSec-U and
MiniSec-B is that for the unicast mode, only x = 3 bits of the counter are sent in the
packet header, while for the broadcast mode the whole counter has to be sent.

2.5. SecureSense

SecureSense [21] provides dynamic security service composition using the TinySec in-
frastructure. It introduces a new 1-byte field in its packet format called SCID as an indi-
cator of the services provided by the message. The values of the bits in this field deter-
mine the combination of services provided, like confidentiality, integrity, semantic secu-
rity and replay protection.
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SCID has replaced the TinyOS active message type (AM) field in order not to in-
crease the packet length and consequently, the packet transmission time. However, the
removal of active message type field introduces several major problems for upper layer
services as it directly affects the Active Message Model of TinyOS. According to this
model, each packet on the network specifies a handler ID that will be invoked on re-
cipient nodes. When a message is received, the receive event associated with this ID is
signalled. This mechanism allows different network protocols to operate concurrently
without conflict. Removing the AM ID, therefore, significantly affects implementation
of such protocols under TinyOS and introduces new complexities.

2.6. ZigBee

Security services provided for ZigBee include methods for key establishment, key trans-
port, frame protection, and device management[22]. To secure messages transmitted over
a single hop, ZigBee uses MAC layer security, provided by the IEEE 802.15.4 standard,
while for multi-hop messages it relies on higher layer security (i.e. the network layer).

The ZigBee specifications provide different means to achieve the following security
requirements:

• Authentication: Network level authentication is achieved by using a common net-
work key. Authentication of messages exchanged between two nodes is achieved
by using unique link keys shared by these nodes. This prevents insider and out-
sider attacks but requires high memory usage.

• Encryption: ZigBee uses 128-bit AES encryption. Encryption protection is pos-
sible at network level or link level. As some applications may not need any en-
cryption, encryption can be turned off without impacting freshness, integrity, or
authentication.



• Freshness: ZigBee nodes maintain incoming and outgoing freshness counters to
maintain data freshness. These counters are reset every time a new key is cre-
ated. Devices that communicate once per second will not overflow their freshness
counters for 136 years.

• Message Integrity: ZigBee specifications provide options of providing 0, 32, 64 or
128 bit data integrity for the transmitted messages. The default is 64 bit integrity.

Encryption at the MAC layer is done using AES in Counter (CTR) mode and in-
tegrity is done using AES in Cipher Block Chaining (CBC- MAC) mode [16]. A com-
bination of encryption and integrity is done using a mixture of CTR and CBC- MAC
modes called the CCM mode. Encryption at the network layer is also done using AES.
However, in this case the security suites are all based on the CCM* mode of operation.
The CCM* mode of operation is a minor modification of the CCM mode used by the
MAC layer. It includes all of the capabilities of CCM and additionally offers encryption-
only and integrity-only capabilities. These extra capabilities simplify the network layer
security by eliminating the need for CTR and CBC-MAC modes.

3. Building Transparent Security Services

In the previous section we reviewed some of the most known link-layered security frame-
works for sensor networks. In the remaining sections we move to describing in more
details the issues involved in designing such a framework. In particular, we are going
to emphasize in the design and implementation of the following two main mechanisms
necessary to achieve the various security requirements:

• Key management techniques that look into the different ways to establish and
distribute cryptographic keys among the different nodes in the sensor network,
and

• Mechanisms used to encrypt the important data (to provide data confidentiality)
and to calculate the MAC (to provide data authenticity and data integrity) using
the established cryptographic keys.

So, first we begin by describing a key management scheme that will provide the
necessary keys for our security framework (called L3Sec, for Lightweight Link Layer
Security, first presented in [23]), and then in Section 3.2 we complete it by showing how
it provides secure services to the higher levels.

3.1. Key Management Module

In the bibliography there are three major approaches for key management in WSN:

• Deterministic pre-assignment. Examples of this approach are SPINS[20] and
LEAP[24] in which unique symmetric keys shared by the nodes with the base
station are assigned before the network is deployed. Using this approach, cryp-
tographically strong keys can be generated, however, this involves a significant
pre-deployment overhead and is not scalable.

• Random pre-distribution. Schemes like those in [25], [26] and [27] and PIKE[28]
refer to probabilistically establishing pair-wise keys between neighboring nodes



in the network. Usually in this approach a random subset of keys from a key pool
is pre-assigned to every node; two nodes establish a pair-wise key based on the
subset of the shared keys between them. This framework is quite flexible; the
choice of protocol parameters determines the trade-off between scalability and
resiliency to node capture. However, most of the key pre-distribution schemes
rely on sensor nodes to broadcast a large number of pre-loaded key IDs to find
pair-wise keys between neighboring nodes, thus leading to a huge communication
overhead. In addition, to guarantee network connectivity, each node has to store
several hundreds keys or key spaces, which may greatly decrease the memory
availability.

• Deterministic post-deployment derivation. In this approach, nodes use some glob-
ally shared secret and pseudo-random number generators to derive the keys at run-
time. LEAP[24] use this approach in order to establish pair-wise and group keys.
A node erases the global secret after the completion of the initial key establish-
ment phase to provide resilience against possible node compromises. However,
most of the techniques based on this approach make it infeasible for even non
compromised nodes to generate new keys at a future time making these protocols
inefficient for dynamic sensor network topologies.

The key management scheme that we describe in this section follows the post-
deployment approach with support for newly added nodes. It addresses flexibility and
scalability issues and is resistant to node capture attacks. This module forms the core of
the L3Sec framework described in the next section, but it can also be used as a stand
alone component or it can be easily integrated into other security protocols providing the
related services to them.

A comparison of the above-mentioned key management schemes as well as the one
presented here is given in Table 1. PW stands for pair-wise keys, G stands for a global
key common among all nodes, NB is the node-base key common between each one
of the nodes and the base station, and BC is the broadcast key of each node common
between the node and its neighbors.

Table 1. Comparison of key establishment protocols in WSN

Protocol SPINS LEAP PIKE L3Sec

Preloading Overhead yes yes yes no

Capture Resistance no partially partially yes

Scalability no no yes yes

Preloaded keys NB NB,G PW G

Key Types PW,NB PW,NB,G PW PW,NB,BC

3.1.1. The Key Establishment Protocol

Before the sensor nodes start establishing the keys, they need to run a neighbor discovery
phase. This is achieved in two steps by a pair of handshake messages. In the first step,
node i broadcasts a specific type of message containing its ID so that every other node
in i’s communication range (like j for example) can receive it. We refer to this message
as a ping message. Every node receiving the ping message answers back to the sender
(i) with a pong message containing its ID (steps 1 and 2 in Table 2). Node i can then



add j to its own neighbor list. After a sufficient amount of time (see Table 3 and more
explanations in Section 3.1.2), i will discover all of its neighbors and this phase will be
finished.

Next, we need to provide cryptographic keys in order to secure both one-to-one and
one-to-many communication in a wireless sensor network. For this purpose the protocol
establishes three different kinds of keys in each sensor node:

1. Pair-wise (PW) key that is established between two neighbors to protect their
one-to-one communications.

2. Broadcast (BC) key that is established in order to secure the broadcast messages
sent by a node to its neighbors.

3. Node-Base (NB) key that is established in order to secure the communication be-
tween a node and the base station (note that this communication is not necessar-
ily direct). A message encrypted by this key, can only be decrypted by the base
station.

Each node i computes its own node-base key and its pair-wise keys with its neigh-
bors as well as their broadcast keys as follows:

NBi = F (i||baseStationAddress||K)

PWi,j = F (min(i, j)||max(i, j)||K)

BCi = F (i||K)

where “||" is the concatenation operator and F is a secure pseudo-random function usu-
ally implemented by a hash function such as SHA-1 or MD5. K is a global master key
that is distributed to all nodes before deployment of the network. As we will explain later,
K will eventually be deleted from the memory of the nodes in order to make the scheme
more secure against node capture attacks.

Table 2. Steps of Key Establishment Protocol

Step Message

1 i → j : {i}
2 j → i : {j}
3 i → j : {i, PWij , NA}NBj

4 i → j : {i, BCi, NB}NBj

5 j → i : {j, NA, NB}PWij

6 i Deletes master key K and node-base key of j

When these calculations are over, node i has a complete table of all the needed keys.
However, it needs to announce its pair-wise and broadcast keys to its neighbors in order
to communicate with them. In other words, a neighbor node j has to update its key table
with the keys corresponding to node i. Thus, node i has to send a message M containing
these keys to node j. Obviously, M should not be sent in plain. Therefore, node i should
calculate an appropriate key in order to send an encrypted version of M to node j. A
proper key, as we will see, is the node-base key of node j which can be derived by i as
follows:



NBj = F (j||baseStationAddress||K)

Having this key, node i can encrypt and send to j the key it shares with it (PWi,j)
as well as its own broadcast key (BCi). The related messages are the following (Steps 3
and 4 in Table 2):

i → j : {i, PWi,j , NA}NBj

i → j : {i, BCi, NB}NBj

where NA and NB are two nonces to guarantee the freshness of these messages3.
After sending these two messages, node i will delete the node-base key of node j

from its memory. Therefore the only non-base station node that can decrypt these mes-
sages is node j (note that we assume the base station is secure). Node i will also delete
the master key K from its memory.

Upon receiving the keys, node j will answer back to node i by sending a message
containing the nonces NA and NB . This message is encrypted with the pair-wise key of
i and j (Step 5 in Table 2). At this point, key establishment is complete.

Notice how this message exchange enforces the scalability aspect of the protocol:
related keys can be established when a new node is added to a previously deployed net-
work. Any new node that joins the network (such as i) can initiate the key establishment
phase by broadcasting a ping message. Following that, related keys are calculated by the
new node. Then the broadcast key of this added node, as well as its pair-wise keys with
each of its neighbors are sent to related neighbors, encrypted with their node-base keys.

Using the node-base keys for this purpose is quite an appropriate choice in order
to make the protocol scalable and secure. This is because the already available network
nodes have already deleted the master key K from their memory and consequently can-
not use it to either calculate the keys or decrypt any message encrypted with it. It is not
a good idea to use the broadcast key of previously joined neighbor nodes (like j) since
other neighbors of j have that key available and can decrypt messages encrypted with it;
a fact that results in providing a looser security scheme.

The deletion of master key K and the temporarily calculated node-base key of j
(NBj) by i makes the protocol resilient to node capture attacks. It reduces the negative
consequences of capturing a node as the attacker will gain access only to that neighbor-
hood and not the entire network. Since the needed time for key establishment is negligi-
ble, we can assume that the adversary does not have enough time to find the master key
K before it is deleted from the memory of the nodes (see also LEAP[24] for a similar
assumption).

Moreover, newly joined nodes must come with the master key K in order to cal-
culate the cryptographic keys. Therefore, an adversary cannot introduce new nodes to
the network, since she doesn’t know K. In addition to that, it is important to note that
if one of the above mentioned messages in key establishment protocol is not delivered,

3The reason that message M is broken into two consecutive messages is only a practical nuance. The overall
size of M – combination of the two mentioned messages – which would be 32 bytes (node ID is 2 bytes and the
pair-wise key, the broadcast key and the nonce are 10 bytes each) is larger than the maximum allowed message
size in TinyOS which is 29 bytes. Hence, we were forced to break M into two different messages. However, if
keys are 8 bytes long then these two messages can be merged to one.
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Figure 6. Key establishment module architecture.

the receiving node will not get stuck. If node i does not receive the last message of the
protocol (Step 5 in Table 2), it will not add any entry for node j in its key table.

3.1.2. Implementation and Performance

We implemented the key management module described above in TinyOS in order to
study its time and memory overhead and energy consumption. Figure 6 depicts the com-
ponents of the key establishment module and how they are wired together.

As a stand alone library, this module implements an interface KeyInterface which
contains three commands and three events. Command init(k) initializes the key estab-
lishment module. When all of the keys are established among current nodes, the user will
be notified by an initDone() event. Other commands provide security services such as
encryption, decryption and MAC computation. The higher level application can use these
services to design and implement its own security scheme. The complete solution dis-
cussed in Section 3.2 provides even more transparent security services embedded in im-
plemented interfaces, Send() and Receive(). The MD5 module is used as pseudo-random
function that is needed to establish the different type of keys.

The memory overhead of the key management module for each node can be calcu-
lated as follows:

Overhead M = [(|BC|+ |PW |) ∗ d] + |NB|,
where |BC|, |PW | and |NB| are the size of broadcast key, pair-wise key and node-base
key respectively and d stands for the maximum number of neighbors each node may
have4. The default size of all types of keys in the key establishment module is 10 bytes,
which provides strong security (280 bit key space) for sensor network applications. As a
result, in a very dense network where d = 50, we will have M ≈ 1KB. Although this
value of d is far more than enough to keep the network connected, this memory overhead
is well within the memory capabilities of motes (MICA2 motes have 4KB of RAM).

During the key establishment phase, prior to deletion of the master key, an adversary
has a chance to find it and use it to derive all the other keys. However, this time is so

4In our current implementation of neighbor discovery phase, a node willing to discover its neighbors, broad-
casts a ping message and waits for t milliseconds to receive pong messages from the potential neighbors. Yet it
discards pong messages if they arrive after t milliseconds or if the number of discovered neighbors is already
d. Values of d and t are decided during deployment time and play important roles in network connectivity.



Table 3. Required time and energy before the global key deletion

Phase Neighbor discovery Key computation Key Sending

Time 1000ms 10ms 10ms

Energy 1592640nJ 157nJ 38049000nJ

small that the probability that the attacker will capture a mote and retrieve the key is con-
siderably small. Table 3 shows the related duration (calculated with Tossim) that it takes
to delete the master key from memory of a newly added mote during its initialization
phase5.

Table 3 also presents the estimated amount of energy consumption for each phase
of the key establishment for the same network (d = 50). This estimation was calculated
by multiplying the total amount of communications by an average communications cost
of 18 µJ/bit (see PIKE[28] for a similar assumption). As a result, the estimated energy
consumption of the key management scheme presented here is approximately 0.4J (note
that as presented in Table 3 the energy needed for key computation is quite smaller than
the needed energy for communication) comparing to PIKE-2D that is more than 8J
or PIKE-3D[28] which is around 6J . This high energy efficiency of the L3Sec’s key
establishment scheme comes with a comparable cost in terms of memory overhead; it
uses about 1000 bytes of memory to establish and manage the keys while PIKE-2D and
PIKE-3D need around 600 bytes and 500 bytes respectively.

In the L3Sec’s key establishment scheme the effect of having a node captured is
reduced to its neighborhood, i.e. the captured node’s pairwise keys with its neighbors,
its broadcast key and its node-base key are the only keys that can be retrieved by the ad-
versary. This is a small fraction of the established keys and communication still remains
secure in the rest of the network.

3.2. A Link-layer Security Framework

Having built a key management scheme to use as the base, we now present the L3Sec
link-layer security framework, first proposed in [23] and compare it with other similar
protocols that we reviewed in Section 2. The main goal of this framework is to be trans-
parent and easy to use. More specifically, it features the following properties:

• The process of key establishment as well as related computations regarding the
provision of security services such as confidentiality and authentication is com-
pletely hidden from the protocols in the upper layers.

• It is flexible so that the developers can adapt it to the security needs of their
applications. This is an important requirement, especially in resource constrained
systems such as sensor networks. As different messages being exchanged in the
network require different security services, a security platform has to be flexible
enough to address all the security needs of different types of communications
while not imposing extra overhead due to redundancies.

Additional to these features, the security framework satisfies the properties that we
described in Section 1, namely data confidentiality, data authentication, semantic security

5The higher the value of t, the higher the time prior to the deletion of master key. The current value of
t = 1000ms as appears in Table 3 is quite appropriate for a very dense network where d = 50 and all of the
nodes are supposed to be able to discover all of their potential neighbors.



and freshness. Next we describe what approaches have been taken for each of these
properties.

3.2.1. Data Confidentiality

In order to protect the messages being exchanged among the nodes from eavesdropping
by unauthorized parties, appropriate encryption mechanisms are provided. The default
cipher that is used in the implementation of this framework for this purpose is SkipJack,
however, the platform is not bound to use any specific cipher and related settings can be
changed easily by the platform user (the other currently available cipher in the imple-
mentation is RC5).

3.2.2. Data Authentication

Proper message authentication codes (MAC) are used to allow nodes detect any modifi-
cations in received messages. The MAC generation is performed by applying a pseudo-
random function (implemented by a hash function) to the concatenation of the message
and the related established key. The default hash function that is used in the implementa-
tion of L3Sec is MD5. However, related settings can be easily changed to replace it with
any other hash function, such as SHA-1.

Since the already established keys (e.g. pair-wise keys established among the neigh-
bors) are used to generate the message authentication codes, network nodes are able to
verify the authenticity of the received messages. Using this service, unauthorized nodes
will not be able to send legitimate messages into the network. Thus, an access control
service is also provided using generated MACs.

3.2.3. Freshness and Semantic Security

Common defences to protect a network from message replay attacks is to either times-
tamp the messages using some network time synchronization protocol or include a mono-
tonically increasing counter in related messages in order to be able to detect replayed old
messages and reject them.

Providing time synchronization in WSN is usually quite complicated. Moreover, do-
ing it in a secure manner is even more demanding and has to rely on a security platform
like the one we describe here. As a result, in the implementation of L3Sec the increasing
counter approach is used to guarantee the freshness of the messages. However, the mem-
ory cost of having every recipient maintaining a table of the last received counter value
of all of the other nodes is quite high. This is the reason why TinySec, as pointed out by
the authors of its paper, does not provide acceptable security against replay attacks.

As a matter of fact, a complete provision of such a service in link layer is not prac-
tically feasible. This is because information about the network’s topology and commu-
nication patterns seem to be mandatory to provide protection against replay attacks, yet
this information is not available in the link layer. However, having neighbor information
available at the end of the neighbor discovery phase, L3Sec lets each sensor maintain
only the last counter value for its neighbors and not for all nodes. Thus, as a message is
being routed to a specific destination, the counter value is updated on each hop.

The amount of memory needed to keep the neighbors’ counter value is quite small
(for example, if each counter requires 4 bytes, the total amount of memory needed to
keep the counter values in a very dense network where each node has 20 neighbors will
be 80 bytes).
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3.2.4. Run-time Composition of Security Services

An approach similar to the one used in SenSec is not appropriate to be used in a general
security framework for WSN, since it provides the highest possible degree of security for
all of the exchanged messages. A more flexible scheme is provided in L3Sec by using
the most significant three bits of the data length field in the packet format as an indicator
of the security service(s) to be used. These three bits are never used by TinyOS, as the
maximum data length in TinyOS is chosen to be 29 bytes (see also TinySec for a similar
approach). Consequently, the provision of this feature comes with no overhead.

Being motivated by TinySec, L3Sec provides run-time composition of security ser-
vices without removing the AM ID or adding extra fields to support integration of ser-
vices. Each one of the higher three bits of data field of the packet stands for a security
service (from higher order bit to the lower: Replay Attack Protection, Access Control
and Integrity, Confidentiality) and setting any bit means that the related service is pro-
vided for that packet. Thus the desired services for different packets can be composed at
runtime.

3.2.5. Protection against Node Capture Attacks

L3Sec is the first link-layer security framework providing acceptable resistance against
node capture attacks. This feature minimizes the effects of compromising a node to the
neighborhood of that node, keeping the rest of the network in a secure state. No assump-
tion about tamper resistance is made. While tamper resistance might be an effective solu-
tion for node capture attacks, it is considered noticeably expensive for the sensor nodes,
which are intended to have low cost.

3.3. Packet Format

We conclude the description of L3Sec by showing how the TinyOS packets should be
modified to support the properties that we mentioned above. Figure 7 shows the fields
included in the packet format in the full security mode.

The Source field of the packet is used to find the appropriate established pair-wise
or broadcast key needed for the security services. Note that TinySec does not use the
Source field when it is set to authentication only (TinySec-Auth) mode. This is because
it assumes that if the attached MAC of a received message is valid then it comes from
an authorized source (note that in TinySec the MAC is derived using a specific global
key shared among all valid nodes, a bad security practice as we explained in Section
1). However, this assumption is not necessary in L3Sec, which uses established keys in
order to resist against node capture attacks. As a result, we must include the Source field
in the packet format.



Table 4. Operational modes and related settings.

Mode SetBits Omitted Fields Omitted Operations

“RAC” 111 - -

“RA” 110 - Encryption

“RC” 101 MAC MAC

“R” 100 MAC MAC & Encryption

“AC” 011 - Counter Saving

“A” 010 Counter Counter Saving& Encryption

“C” 001 MAC Counter Saving & MAC

“-” 000 All Security Fields All Security Operations

In other related service modes, such as replay attack protection mode, the packet
format contains a counter (Counter). Together with the Source field, this 2 bytes long
counter can be used to avoid IV reuse in CBC encryption mode. In L3Sec, similar to
TinySec, the IV includes the destination address, the active message (AM) type, the data
length, the source address and the counter. The Source||Counter format guarantees that
each node can send 216 messages with the same AM type and the same destination, but
with different IV values. As mentioned, another application of the counter value is its
role in providing resistance against replay attacks.

Finally, the most significant three bits of the data length field indicate the different
major security modes that are provided. These include

1. Authentication, Access Control and Integrity (A). In this mode the Counter field
is not required, but obviously the MAC field is needed.

2. Confidentiality (C). In this mode the Source and Counter fields are used in the
packet format, however receiver nodes do not save the related counter values.

3. Replay Attack Protection (R). Source and Counter fields are also necessary in
this mode, but the counter value of each neighbor is kept.

As we mentioned earlier, these modes can be combined in any variation setting the
corresponding bits. Table 4 shows in more detail the different modes, provided services
and the corresponding bit values.

Conclusion

Reviewing the proposed link-layer security frameworks for sensor networks we saw that
all of them succeed in providing data confidentiality, data authentication and semantic
security following some common approaches. However, what is missing is the provision
of some features that would make them more secure and practical to use. These features
include the resilience to node capture attack and scalability, both of which require that
the framework is tied to an appropriate key management protocol. Another important
feature is flexibility, which allows different types of security services for different types
of communications among nodes. We presented a security framework, namely L3Sec,
which incorporates these features while at the same time it remains energy efficient and
easy to use. Looking into this framework we described how the underlying key manage-
ment scheme should be used and how the TinyOS packet structure should be changed
for such a scheme to provide a complete range of security services and satisfy the afore-
mentioned requirements.
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