Scatter — Secure Code Authentication for Efficient
Reprogramming in Wireless Sensor Networks

Ioannis Krontiris*

Chair of Mobile Business & Multilateral Security,
Goethe-University Frankfurt,

60629 Frankfurt am Main, Germany

Fax: +49-69-798-35004

E-mail: ioannis.krontiris@m-chair.net
*Corresponding author

Tassos Dimitriou

Athens Information Technology,
19.5 km Markopoulo Ave.,
19002 Peania, Athens, Greece
Fax: +30-210-668-2703

E-mail: tdim@Qait.edu.gr

Abstract: Currently proposed solutions to secure code dissemination in wireless sensor
networks (WSNs) involve the use of expensive public—key digital signatures. In this work
we present Scatter, a secure code dissemination protocol that enables sensor nodes to
authenticate the program image efficiently. To achieve this, we use a scheme that offers
source authentication in the group setting like a public—key signature scheme, but with
signature and verification times much closer to those of a MAC. In this way, Scatter avoids
the use of Elliptic Key Cryptography and manages to surpass all previous attempts for
secure code dissemination in terms of energy consumption, memory and time efficiency.
Besides the design and theoretical analysis of the protocol, we also report the experimental
evaluation of Scatter in two different hardware platforms, Mica2 and MicaZ, which proves
its efficiency in practice.

Keywords: sensor networks; code dissemination; network reprogramming; security;
authentication.

Biographical notes: 1. Krontiris received his PhD degree from Mannheim University,
Germany, and his Master degree from Carnegie Mellon University, Pennsylvania, USA,
in 2008 and 2004 respectively. He is currently working as a postdoctoral research fellow
with the Mobile Business and Multilateral Security group at Goethe University Frankfurt,
Germany. His research is focused on the area of embedded distributed systems and
especially security in wireless sensor networks. His main technical interests lie in the areas
of privacy in participatory sensing, and reliability and security in distributed systems.

T. Dimitriou is an Associate professor at Athens Information Technology and adjunct
faculty of Information Networking Institute at Carnegie Mellon University, USA. At
AIT he is leading the Algorithms and Security group where the primary objective is to
bring together expertise in education, research and practice in the field of information
security and algorithms. Members in the group conduct research in areas spanning from
the theoretical foundations of cryptography to the design and implementation of leading
edge efficient and secure communication protocols. Dr. Dimitriou is a member of various
international societies like a IEEE and ACM and a Fulbright fellow.

1 Introduction

through the parallel or the serial port. The same process
has to be repeated for all the nodes, which then have
to be re-deployed back to the field. Not only this

Traditional methods of programming sensor nodes with
a new binary require physical access to the nodes
themselves: the application is developed in a PC and
the resulting program image is loaded to the node

solution does not scale to large number of geographically
distributed nodes, but in many cases it might not be
even possible to access the nodes. For these reasons, code
dissemination have emerged as a solution to propagate

2

the new program image remotely, over the wireless link
to the entire network, in a multi-hop fashion. Each sensor
node propagates any received updates to its immediate
neighbors, which in turn do the same until the new
binary reaches all the nodes. In-system programmability
allow nodes to reprogram themselves and start operating
with the updated code.

A number of code dissemination protocols suitable
for sensor networks have been proposed (see Wang et al.
(2006) for a comprehensive survey). They focus mainly
on the reliability and the latency of the dissemination,
but from a security point of view all of them assume
that the nodes will behave in a legitimate way, meaning
that no node can be compromised and controlled by
an adversary. As a result nodes do not care about
authenticating the source of the program. This fact
allows an attacker to approach the deployment site
and disseminate malicious or corrupted code in the
network, reprogramming all the nodes at will. Thus, in
the same way that a code dissemination protocol can
help the network administrator with the program update
procedure, it can also provide an easy way for an attacker
to compromise the whole network by installing malicious
code.

In this work we present Scatter, a scheme that secures
code dissemination and allows sensor nodes to efficiently
verify that the new code originates from a trusted source,
namely the base station. With this security feature
added, an attacker could not authenticate herself to the
network, and therefore the nodes will reject malicious
updates.

There have been several proposals to secure
code dissemination for wireless sensor networks so
far (Lanigan et al., 2006; Dutta et al., 2006; Deng et al.,
2006; Shaheen et al., 2007; Liu et al., 2008; Tan et al.,
2009). All of these approaches have in common that they
employ either RSA or elliptic curve cryptography (ECC)
to solve the problem and they concentrate on providing
resilience against DOS attacks. So, they differ mainly
in the granularity of data considered in the hash chains
they employ.

The expensive signature overhead of public-key based
solutions introduces a big delay in the protocol, uses a
lot of memory resources on the nodes and consumes a
lot of energy for complex computations. In this paper
we show that the characteristics of code dissemination
allow the use of r-time signature schemes, which decrease
dramatically the signing and verification complexity,
while maintaining the attractive characteristics of a
public-key signature scheme. Therefore, in this paper we
propose a construction of an r-time signature scheme
for sensor networks and we introduce Scatter, a secure
version of Deluge that integrates our solution.

In the remaining of this paper, we start in Section 2
by defining the concept of network reprogramming
and giving some details about Deluge, a widely used
protocol for this operation. In Section 3, we present
the requirements and desirable features that a secure
code dissemination protocol should exhibit, and in

Section 4 we elaborate on the main approaches that
exist and which one Scatter follows to be more efficient.
In Section 5, we present a r-time signature scheme
appropriate for sensor networks, which is used by Scatter
to authenticate program images. Section 6 describes the
implementation and experimental evaluation of Scatter
in different sensor platforms. Finally, Section 7 concludes
this work.

2 Code Dissemination Protocols in WSNs

It is important to give some details about code
dissemination protocols in sensor networks that will
help us understand better the process of securing this
procedure. In general, code dissemination is achieved by
the following steps (see Figure 1):

Base Station ﬁ Sensor Node
Application Dissemination Radio | ~_| External Program
image file :> data packets [flash :> memory

Figure 1 Code dissemination process.

1. The base station reads the new application binary
code and breaks it into packets to disseminate.

2. The base station sends the packets to the sensor
nodes within communication range.

3. The nodes store the packets in the external
flash memory after receiving them. They request
retransmission of any missing packets.

4. The nodes forward the packets to any of their
neighbors that have not received them, until all
nodes get the new code.

5. After all packets have been received, the code lies
in the external flash memory of the nodes. The
nodes verify the program image and call the boot
loader to transfer the program code to the program
memory. Then the boot loader restarts the system
and the new program begins execution.

Since Deluge (Hui and Culler, 2004) is one of the most
commonly used protocols for code dissemination and has
been included in recent TinyOS distributions (Hill et al.,
2000), we use it as our base example in this paper.
Deluge propagates a program image by dividing it
first into fixed-size pages and then uses a demand-
response protocol to disseminate them in the network.
As soon as a node receives a page, it makes it available
to any of its neighbors that also need it. At the same
time it sends a request to the sender in order to receive
subsequent pages. In this way, Deluge supports a sort of

pipelining: already received pages are forwarded further
to the rest of the nodes while the program image is not
yet complete and new pages keep coming in.

The integrity of each page is verified by using a 16-bit
cyclic redundancy check (CRC) across both packets and
pages. So, if a packet gets dropped or corrupted, the node
requests from the sender to send it again until the page is
completely and correctly received. This means that any
authentication scheme added on top of Deluge does not
need to be robust on packet loss. It can safely assume
that packets always reach their destination. Also, note
that since Deluge does not start receiving the next page,
unless the previous one is completed, an authenticated
broadcast protocol does not need to deal with out-of-
order delivery of pages (even though packets may indeed
arrive out-of-order).

3 Problem Definition and our Contribution

Our goal is to provide an efficient source authentication
mechanism for broadcasting a program image from
the base station to the sensor network. While the
authentication mechanism should still allow efficient
dissemination procedures, such as pipelining, it should
also block malicious updates as early as possible.

The most natural solution for authenticated
broadcasts is asymmetric cryptography, where messages
are signed with a key known only to the sender.
Everybody can verify the authenticity of the messages
by using the corresponding public key, but no one can
produce legitimate signed messages without the secret
key.

However, public key schemes like RSA, have
been long thought to be impractical for the limited
computational, memory and energy resources of sensor
nodes. Gura et al. (2004) have shown that Elliptic
Curve Cryptography (ECC) can provide substantial
performance gains over RSA for constrained hardware.
For example, TinyECC (Liu and Ning, 2008) provides a
freely available ECC implementation for TinyOS, which
runs 12 to 16 seconds to verify a signature on MicaZ
motes.

Besides computational overhead, public-key
cryptography solutions also require a large percentage of
the available memory resources. For example, TinyECC
takes over 19.3 KB out of the 48 KB available in ROM
of a standard MicaZ node (Liu and Ning, 2008).

In this paper we provide an efficient authentication
scheme for disseminating a finite stream of data based on
symmetric cryptography primitives, while maintaining
at the same time the properties of asymmetric
cryptography. In this way, we can avoid the use of ECC
or RSA, and reach a much faster and energy efficient
solution for authenticating the program image on the
motes.

The solution satisfies the following requirements:

1. Low computational cost. Since our solutions
requires only computations of a collision-resistant

3

hash function on the motes, it requires low
computational overhead.

2. Low verification time. The rate at which a
code segment is transmitted to the receiver is not
reduced significantly by the authentication scheme.

3. Low communication overhead. The signature
transmitted with data and the embedded hash
values constitute a small percentage of the total
bytes, imposing a low communication overhead.

4. Low memory requirements. The memory
footprint of our code stored in ROM as well as any
cryptographic material buffered in RAM are very
small, given the mote’s limited memory resources.

Moreover, since we are providing an authenticated
broadcast scheme, we assure the following security
requirements:

1. Source authentication. A mote is able to verify
that a code update originates from a trusted
source, i.e., the base station. This means that an
attacker is not able to send malicious code in the
network and reprogram the nodes.

2. Node-compromise resilience. In case an
attacker compromises a node and read its
cryptographic material, she is not able to
reprogram any other non-compromised node with
malicious code.

3. DOS-attack resilience. In case an attacker is
trying to transmit malicious code to the network,
any receiving node is able to realize this as soon as
possible and stop receiving it or forwarding it to
other nodes. For this purpose, Scatter realizes an
incremental security verification mechanism that
allows the dynamic loading of received pages.

4 Design Approaches and Related Work

As we said, asymmetric cryptography is the most natural
solution to authenticated broadcasts. So, one approach
would be to compute a digital signature for the whole
program image. However, that would require the nodes
to receive and buffer the entire image in order to verify
the signature, which is clearly not possible for sensor
nodes, given their limited memory resources. Moreover,
the receiver needs to be able to “consume” each page it
receives, i.e., send it to its own neighbors (pipelining) as
well as store it to the external flash memory.

If we view program images as digital streams of data,
we can apply the solution by Gennaro and Rohatgi
(2001) in signing a program image. What they proposed
is to divide the stream into blocks and embed some
authentication information in each block. In particular,
their idea is to embed in each block a hash of the
following block. This way the sender needs to sign just

4

the first hash value and then the properties of this
signature will propagate to the rest of the stream through
the “chaining” technique.

|Signature

Page N-1

h, h, h, P
Figure 2 Hash chain construction for the pages of a
program image.

In our case, given a program image divided into N fixed-
size pages

P, Ps,...,Py (1)

and a collision-resistant hash function H, we construct
the hash chain

hi = H(Pip||hiv1), i=0...N—2 (2)

and we attach each hash value h; to page P; (see Figure
2), where “||” denotes concatenation. For the last hash
value we set

hN_liH(PN). (3)

Now, we can sign only the hash chain commitment, hg,
and the nodes that receive and verify that signature
will be able to authenticate all the pages by just
computing their hash values and compare them with
those transmitted.

4.1 DOS-attack Resilience

One important design choice is whether to construct the
one-way hash chain over the pages of the new program
image or the packets that compose the pages. In Figure 2,
we showed how the hash chain is applied to larger blocks,
i.e. the pages, but alternatively the same method can be
followed to apply the hash chain at a bigger granularity,
i.e. the packets.

In the former case where the hash is computed over
the whole page, the drawback is that the nodes need
to receive the page before they are able to verify its
hash. Since a page is usually composed of hundreds of
packets, this gives an advantage to an attacker to launch
a DOS attack, by sending a few malicious packets. After
receiving the page, a node will realize that the hash
verification fails and it will request the page again, as it
will not know which specific packets caused this fail.

The alternative approach of computing the hash
values for each packet is followed by both Dutta et al.
(2006) and Deng et al. (2006). Since these schemes
authenticate each packet separately, they can stop
receiving them as soon as they find the first packet that
failed to authenticate, saving the energy to receive the
rest of the packets. However, this comes at a big price,
as it increases the communication and computation

overhead of the scheme, cancelling the benefits that we
got from resisting the DOS attack.

In particular, Deng et al. (2006) construct signed hash
trees (similar to a Merkle tree) based on the hashes of
each packet in the program image and they transmit
these trees before the actual data. This increases the
overhead of packets sent and received by the motes by
about 28%. Moreover, due to memory constrains in the
motes, these values need to be stored and loaded from
the EEPROM each time a packet arrives, which is a very
energy consuming operation for the motes (Stathopoulos
et al., 2003).

Similarly, Dutta et al. (2006), compute the hash of
each packet and place it in the previous packet. This
increases the overall data that have to be transmitted
besides the signature, compared to constructing and
transmitting a hash value for each page. It also increases
the computations a mote has to perform in order to
verify all these hash values, besides the RSA signature
verification that this scheme uses.

Another problem is that schemes, which try to
provide protection against DOS attacks, do so only by
considering the data packets, i.e. the packets that bare
the new program image. However, code dissemination
protocols are more complex than that. In order to
provide some desirable properties, such as flexibility,
efficiency and reliability of the code propagation, they
also use some types of maintenance packets, like request
(Req), advertisement (Adv) and acknowledgment (Ack)
packets. It is easy for an adversary to exploit this kind of
packets in order to launch a DOS attack, bypassing the
protection measures of the above schemes. Zhang et al.
recently showed five different types of DOS attacks made
by malicious nodes exploiting maintenance packets.

So, overall, applying a page-level hashing offers better
performance but less resilience under a DOS attack,
while applying a packet-level hashing imposes high
overhead in all cases, in order to offer partial resilience
under this attack. In our scheme we have chosen the
former and simpler approach of constructing the hash
chain on the pages of the program image. This is also
followed by other schemes, like Sluice (Lanigan et al.,
2006). In this work we concentrate on the signature
construction and verification, rather on the hash chain
construction. Let us note that applying a different hash
granularity is possible in Scatter, without affecting the
signature scheme proposed.

4.2 Signature Scheme

The most energy consuming operation in the process of
secure code dissemination is the authentication of hg,
which is signed and released before the transmission of
the pages. Therefore, choosing which security scheme
to apply for this operation is important in the
overall protocol’s performance. As we said, all currently
proposed solutions use a public key scheme like RSA or
Elliptic Curve Cryptography (ECC) for signing the hash
commitment. In the next section we are going to show a

much more efficient way that can be applied for the case
of code dissemination protocols.

We base our analysis on the fact that real world
software updates in sensor networks do not constitute
an everyday operation but rather they are performed
occasionally. Therefore, we do not need to authenticate
an unlimited number of broadcasts. We only need to
be able to do so for a sufficiently large number of
times. This fact allows us to design and apply an r-
time signature scheme, which exhibit fast verification
times. We describe analytically this solution in the next
section. We first presented this scheme in 2006 (Krontiris
and Dimitriou, 2006a,b), while lately, Ugus et al. (2009)
independently proposed a similar solution.

5 Scatter’s r-time Signature Scheme

An r-time signature scheme is similar to a public-key
scheme in that it can be used to sign messages that can
be verified using publicly known information. These r-
time signatures decrease dramatically the signing and
verification time compared to public-key signatures,
however, one can only sign up to r messages with a
given key pair. After that, the security level drops below
acceptable limits and a new key pair must be generated.
But regarding code dissemination, if we can efficiently
sign and verify, for example, r = 32 new program images
before we need to redistribute a new public key, we have
a tradeoff that makes this an attractive solution.

Recently, some signature schemes were proposed
that seem attractive for sensor networks. For example,
Reyzin and Reyzin (2002) introduced HORS, an r-time
signature scheme with efficient signature and verification
times. This scheme was further improved by Pieprzyk
et al. (2003). Both of these r-times signature schemes can
sign several messages with the same key with reasonable
security before they can get compromised. However there
are some drawbacks that prevent us from applying those
schemes to sensor networks. The main one is the size of
the public/secret key pair and the size of the generated
signatures. For example, the HORS scheme uses a public
key size of 20 KB for r = 4, which is not suitable for use
in sensor networks. It also grows unacceptably high if we
want to sign more messages (bigger r) and keep security
at an acceptable level.

To overcome these drawbacks, we propose an r-time
signature scheme, which is optimized for use in sensor
networks. This scheme manages to drop the signature
and public key sizes to values that are attractive for
use in sensor nodes, and also reduces the signature
verification time to that of a few hash operations.

Throughout our analysis we follow the same notation
as in HORS. Table 1 summarizes the main parameters
and their definitions. In what follows, we formally define
our scheme.

Let F' be an [-bit one-way function. First we need to
produce the secret and public key pair. To do this the
signer applies the following steps:

Table 1 Notations.

Notation Definition

PK Public Key

S Signature

|h Size of hash values (bits)

l Size of secret values (bits)

t Total number of secret values

k Number of secret values in signature
T Number of public values

T r-subset-resilient

% Provided security level

Secret Key Generate ¢t random [-bit quantities for the
secret key:

SK = (s1,...,5t). (4)

Public key Compute the public key as follows:
Generate t hash values

(Ug, ..., u), (5)
where
up = F(s1),...,us = F(s¢). (6)

Separate these values into T' groups, each with t/T
values. Use these values as leaves to construct 7'
Merkle trees, as shown in Figure 3. The roots of the
trees constitute the public key PK of our scheme.

Secret Key

Figure 3 Public key construction using Merkle trees.

A Merkle hash tree (Merkle, 1988) is a complete binary
tree where each node is associated with a value, such
that the value of each parent node is the hash function
on the values of its children:

v(parent) = H(v(left)||v(right)) (7)

where the function v here stands for the value of a node
and H for a hash function.

Using the Merkle trees we have achieved a public key
size of a few hash values, i.e., the roots of the Merkle
trees. These values need to be passed to all sensor nodes
in an authenticated way. This can be done for example
during initialization of sensor nodes.

Next we show how any message m can be signed using
this secret and public key pair. The procedure for this is
described in the following steps (see also Figure 4):

1. Use a cryptographic hash function H to convert the
message to a fixed length output. Split the output
into k substrings of length log, t each.

2. Interpret each substring as integer in the range
[1...t]. Use these integers i1,1s,...,i; to select a
subset o of k values out of the set of secret values
SK = (81,...,8¢).

3. The signature of the message m is made up
by the selected secret values along with their
corresponding authentication paths.

| 0 |
|) |
T N O S
o !

i i, i, i,
Figure 4 Producing k indices of secret values from a
message m of arbitrary length.

By authentication path of a secret value we mean the
values of all the nodes that are siblings of nodes on the
path between the leaf that represents the secret value
and the root of the corresponding Merkle tree, as shown
in Figure 5. Note that for each message that we sign,
a part of the secret key is leaked out. That’s why this
process cannot be repeated ad infinitum.

C/'O
N 4
bdbdbd

Figure 5 Authentication path corresponding to a secrete
value (marked leaf). The nodes, which are shaded
grey, constitute the path.

A node that has received the message m and wants
to verify its signature, recomputes the hash value of
the message, reproduces the same indices and picks
the corresponding values of the set PK. Remember
that the node has the public values PK (roots of the
Merkle trees), but not the Merkle trees. Then it evaluates
each authentication path of the signature to reproduce
the root of the Merkle tree and compare it with the
corresponding member of the public key PK that it has

in its memory. The signature is accepted, if this is true
for all k values. The detailed description of the algorithm
is shown in Figure 6.

Let us emphasize that the verification of the signature
at the sensor nodes requires only hash and comparison
operations. Both of these operations can be performed
very fast and efficiently in the nodes. For example, the
time to hash one block using MD5 in a sensor node is
2.58 ms, as we will see in Section 6.2. The number of hash
operations that will be needed depends on the number
and the size of the authentication paths (or else, the size
of the signature), which also determines the security level
of the scheme.

The r-time signatures scheme we described can be
tuned by setting various parameters, like the number
of secret values ¢, the number of Merkle trees T, or
the number of k parts that we split the hash of the
message m (i.e, number of secret values that we release
in the signature). The values that we choose for these
parameters will determine the signature size and the
public key size, two quantities that are important for
the efficiency of the scheme, but also its security level.
We study how these quantities are affected by the
parameters of our scheme in the following sections.

5.1 Public Key and Signature Size

There is a trade-off between the public key size and
the signature size. The public key stored in each sensor
node is given by the hash values residing at the roots of
the trees. The more the number of the trees, the bigger
the public key becomes but the smaller the signature
size becomes. To see why, notice that the signature size
depends on the length of the authentication paths, which
are ultimately related to the height of the Merkle trees.
More trees mean less secret values per tree and hence
smaller height.

Ideally, we would like both of these sizes to be as
small as possible. The signature is transmitted over the
radio to be received and verified by the motes, so the
smaller it is, the less energy and time will be needed
for these operations. Similarly, the public key is stored
in the memory (RAM) of the motes, to be used for the
signature verification procedure. So, there is a limit on
how large it can become. To calculate the formulas that
give these two quantities, let T denote the number of
trees. Hence the public key size is simply

|PK| = |h|T, (8)

since every root contains a hash value of its children. We
use the notation |h| for the output of the hash function
H in bits. For example, |h| can be equal to 128 bits in
the case of MD5 or 160 bits in the case of SHA-1.

If we have T Merkle trees and t secret values, there
can be at most /T values stored at the leaves of each
tree. Thus the height of each tree (and the length of each
authentication path) is simply log,(¢/T"). The signature
S consists of k such authentication paths, where each

Key Generation
Input: Parameters [,k,t

Let u; = F(s;) for 1 <i <t.
Group t hash values uy,us, ..

Let wy,ws, ..
Output: PK = (k,wy,wa,...,

Signing
Let h = H(m).

Split A into k substrings hq, ho, ..

Output: S = (,uilnu’iz’ CER lu’lk)

Verifying
Input: Message m, signature S = (uf, ..
Let h = H(m).

Split into k substrings hq, ho, .

Generate t random [-bit strings si, sa, . .., St.

., ug into T groups of ¢/T values.

Place each group at the leaves of a Merkle tree, constructing 7' Merkle trees.
.,wr be the roots of the Merkle trees.

wr) and SK = (k, s1,82,...,5t)

Input: Message m and secret key SK = (k, s1,82,...,5¢)

., hi, of length log, t bits each.
Interpret each h; as an integer ; for 1 < j < k.
Let pu;; = (si,, AP(sy;))), i.e., the secret value s;; along with its authentication path AP(s;;).

., i) and public key PK = (k, w1, ..., w;)

.., h, of length log, ¢ bits each.
Interpret each h; as an integer ¢; for 1 < j < k.
Compute which Merkle tree corresponds to i;: M; =14;/(¢t/T) for 1 < j < k.
Hash the values in each p), to produce the root wﬁ\/[j.

Output: “accept” if for each 5,1 < j < k,w’Mj = wyy,; otherwise “reject”

Figure 6 The r-time signature scheme. F is a one-way function and H is a hash function.

path is a sequence of hash values of |h| bits. Thus the
signature size is given by

151 = [hl(k logs 7).)

This equation can be simplified further if we recall
how the k secret values are selected. The message m to
be authenticated is first hashed to obtain H(m), a value
that is |h| bits long. Then these |h| bits are broken into k
parts, where each part references one of the secret values.
Thus the number of secret values t must be equal to
2M/k or equivalently

|h| = klog, t. (10)

Combining Equations (10) and (9), we find that the
signature size is given by

S| = [Al(|h] = klog, T). (11)

5.2 Security Level

Next we calculate the security level of the scheme,
since it is also affected by the values we choose for the
parameters of the scheme. Let r be equal to the number
of messages that we allow to be signed with the current
instance of the secret key. For an analysis (see also the
work by Reyzin and Reyzin (2002)) we assume that the
hash function H behaves like a random oracle and that
an adversary has obtained the signatures of r messages

using the same setting of secret/public key. Then the
probability that an adversary can forge a message is
simply the probability that after rk values of the secret
key have been released, k elements are chosen at random
that form a subset of the rk values. The probability
of this happening is (rk/t)¥. If we denote by X the
attainable security level in bits, by equating the previous
probability to 27>, we see that ¥ is given by

Y = k(logy t —logy k — logy). (12)
and by using Eq. (10), we get
Y = k(|h|/k — logak — logar). (13)

5.8 Signature Verification Time

To be able to decide on particular values for r, k and T,
we would also like to have an estimation of how these
parameter affect the verification time of the signature.
We implemented the r-time signature scheme in TinyOS
and measured the verification times for various values of
T on the Mica2 platform. Figure 7 shows the results.

For the signature verification in Figure 7, the time
needed is directly dependent on the signature size. The
parameter determining the signature size is the number
of Merkle trees T. As we build more trees on the
secret values, their height gets smaller, and therefore the
signature size is reduced. Consequently, the verification
time at the mote’s side is also reduced.

300 T
—— r=64, k=8
2801 —=— r=32, k=9
—v— r=16, k=10
260+ 1
2401 1

160

140

Signature verification time (ms)

120

100

80 I I I I
4 8 16 32 64 128

Number of Merkle trees T

Figure 7 Signature verification time as a function of 7.

2500

2000

=
(o2
o
o

=
o
o
o

Public key size (bytes)

500

4 8 16 32 64 128
Number of Merkle trees T

Figure 8 Public key size as a function of T'.

Figure 8 is a graphical representation of Eq. (8), using
MD?5 to produce the hash values, which means |h| = 128.
Let us keep the public key size equal to approximately
1 KByte, so that it fits well in the memory of a typical
Mica2 node (approximately 4 KB of RAM). So, we
set T = 64. Figure 7 shows the verification time of the
signature as a function of the number of Merkle trees
T, for different values of r (number of images that
can be signed using the same keys) and k (number of
substrings that we split the hash value of the message
into). Let us say we want to sign r = 64 messages before
we need to update the keys. What would be a good
value for k to choose? Figures 9 and 10, show a graphical
representation of Equations (11) and (13) respectively,
for T =64 and |h| = 128.

Observing Figures 9 and 10, a good value for & could
be k = 8. Then, for r = 64 we would get a security level
of around 60 bits against passive adversaries, and a
signature size of 1280 bits. The verification time of this
signature, from Figure 7 would be equal to 186.3 ms.
Notice that we used standard implementations of hash

2000

18001 b

16001 b

14001]

12001 b

10001 b

800 b

Signature size (bytes)

600 b

4001 b

I I I I I
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 9 Signature size as a function of k.

140 T T
—— r=4
—— r=8
120§ i Eég I
—— r=64
100+ 1
0
i
= 80r 1
[
>
K
2
5 60r 1
[5)
o
%]
401 1
201]
0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 10 Security level as a function of k.

functions, so we believe that this signature verification
time can be improved even further using optimized code
for the particular hardware of the motes.

We can see now the advantage of using this r-
time signature scheme to authenticate a message in
sensor networks. If we had chosen to use Elliptic
Curve Cryptography, the signature verification would
be much larger. For example, TinyECC (Liu and Ning,
2008) provides ECDSA (American National Standards
Institute, 1998) verification functionality on the sensor
nodes that takes between 12 and 16 seconds, which is
highly inefficient compared to the verification times of
the order of milliseconds, given in Figure 7.

To get a complete picture of the performance
of a code dissemination protocol like Deluge that
uses this r-time signature scheme to authenticate the
broadcasted program images, we need first to show how
the integration of the two schemes is done, and then
measure the overall time to download and authenticate a
complete image to a sensor node. We do this in the next
section, presenting also some implementation details.

6 Implementation and Experimental

Evaluation

6.1 Implementation

We implement Scatter as an extension to Deluge in
TinyOS distribution. Our implementation has two parts,
one for the base station side and one for the sensor side.
The former extends the Deluge Java tools to construct
and inject new code dissemination packets into the
sensor network. The latter is written in nesC (Gay et al.,
2003) and runs on regular sensor nodes.

We add two main functionalities in the Java tools
on the base station side: First, computation of the hash
values of the image pages and second, signing of hg, the
public commitment of the hash chain we have built in
order to authenticate the sequence of pages. In Section 5,
we described how we can create a signature for a message
m using an 7-time signature scheme. We apply this
scheme to sign hg.

Figure 11 shows in detail the process of preparing a
secure program image at the PC side for dissemination
in the network. A program image that Deluge transmits
to the nodes includes some metadata associated with it,
information about the length of the image in bytes, and
the image itself. Deluge first partitions the image into
N pages, given as a parameter the page size |Page|. We
keep the default value for page size, which is 1104 bytes.
Each page is further partitioned into P packets, which
are transmitted to the sensors.

Signature Pages Page 1

J L -

hg
;
/

Page N-1 Page N

L]

1

\
\
\
\
\

‘Patho‘ ‘Path1‘ ‘Pathk‘

Figure 11 Partitioning of the program image into pages
before the dissemination into the network. This
also shows the order at which a mote receives the
signature, the pages and their hash values.
Verification of the signature is possible by storing
only one path at the time.

In Scatter, after we partition the image into pages,
we compute a hash chain in reverse order from the last
page to the first. We need to append these hash values at
the end of the corresponding pages, so we have reserved
the last packet of each page for that purpose. If we use
MD5, a hash value is 16 bytes, so it fits in a packet of 23
bytes (the default value for TinyOS packets). So, each
value of the hash chain padded with Os (to give 23 bytes)
is attached at the end of the corresponding page.

The final step includes the addition of one or more
pages at the beginning of the image that stores the first
value of the hash chain along with the signature we
produced for it using the r-time signature scheme. The
number of the extra pages is determined by the size of
the signature, as this is given by Eq. (9). If |S| denotes

9

the size of the signature, then the number of the extra
pages is [|S]/|Pagel]. If necessary, we add some padding
0s at the end of the signature to fill up the page.

Figure 11 illustrates how the secured program image
is partitioned into pages before dissemination. In this
typical example, the signature is stored in two extra
pages at the beginning of the image. Besides these two
pages, the only extra information transmitted is the last
packet of each page, containing the corresponding hash
chain value.

We now move to the side of the motes and describe
the wverification process for the signature and the
authentication of each page. In particular, we are
interested in the overhead posed by our security scheme
in terms of memory and time.

6.1.1 Memory Requirements

The dissemination and authentication of the code is
done in a per-page basis. As soon as the last packet
of a page is received, the mote checks to see if it is
complete and issues a request back to the sender for any
missing packets, like in original Deluge. When the page
is complete, a CRC check is done to verify its integrity.
Then the mote verifies that the hash value of the page it
just received is the same as the corresponding value that
came with the previous page, before requesting the next
page.

To be able to hash the page, the mote needs to buffer
it in RAM. This requires a buffer equal to the page
size. The default value of Deluge for that parameter is
1104 bytes, so it perfectly fits in a sensor node’s memory
(being 4 KB for Mica2, or 10 KB for Tmote). Of course,
the page size is a parameter of Deluge that can easily
be changed to any smaller value, if the final memory
requirements exceed the available resources.

An exception for what is described above is the first
two pages that the mote receives, which contain the
signature of the hash chain commitment. They also need
to be stored in EEPROM as the rest of the pages.
However, the mote does not need to keep the whole page
in RAM, but rather just each authentication path. This
is because the signature is made up by authentication
paths and the authentication of each path can be done
independently by the others.

Referring to Figure 11, the mote first receives the
hash value of Page 1. This will provide the indices to the
public values. Then, the first authentication path of the
signature will be received. The verification of that path
evolves only a few hashing operations and a comparison
of the result with the corresponding public value. This
can be done fast enough by the mote, so that the path
has been verified before the next path starts coming in.
So, only a temporary storing is needed, equal to the size
of a path, which dependents on the height of the Merkle
trees at the base station.

10

Table 2 Time performance of hash functions in Mica2

platform.
Function Time to hash Time to hash
one block 1104 bytes
SHA-1 7.56 ms 131.7 ms
MD5 2.58 ms 49.6 ms

6.2 FExperimental Evaluation

In this subsection, we report the experimental evaluation
of Scatter in two different hardware platforms, namely
Mica2 and MicaZ. Both platforms have the same
microcontroller, which offers 128 KB of data memory
and 4 KB of program memory. The difference between
the two is the RF transciever they use. Mica2 uses
the Chipcon CC1000, while MicaZ uses the upgraded
Chipcon CC2420, which implements the IEEE 802.15.4
standard.

For comparison purposes, we perform the same set of
experiments for plain Deluge, Scatter as well as Seluge.
We choose to compare Scatter with Seluge, because
according to their experiments (Liu et al., 2008), their
scheme outperforms the approach of Deng et al. (2006)
and Dutta et al. (2006).

The main overhead in execution time that Scatter
imposes on Deluge is due to the main two security
operations evolved, i.e., hashing of the pages and
verifying the signature. We measured that overhead
for each operation separately, as well as the total
overhead compared to plain Deluge over a complete
image transfer, using our implementation in Mica2
motes.

We first examined the execution time needed to hash
a page of default size (1104 bytes). This is shown in Table
2 for two different hash functions, SHA-1 and MD?5. It
is obvious from the results that the time performance
of MD5 is considerably better than that of SHA-1. For
both functions we used publicly available code and no
optimization was made for the specific hardware. So,
these values can be further improved.

We have already shown the signature verification
times for Mica2 in Figure 7. So, now we show the
overall time that it takes to download and authenticate
a new program image on one mote from the PC and
compared it with the time that it takes for plain Deluge.
To investigate and compare the impact of dissemination
code size on performance, we use six different code
image sizes, ranging from 5 to 30 pages of 1104 bytes
each. These correspond to images from 4.8 KB to 31 KB.
Figure 12 shows our results. Note that the time for a
mote to receive a new image is subject to packet losses,
so we perform the same experiment 20 times and take
an average over them. For this specific experiment we
used [= 80, k =8, t = 65536, r = 32, and T' = 32. This
setting gave a signature size of 1408 bytes and a public
key size equal to 512 bytes.

80 T
—&— Scatter
—— Deluge

701 q

60

Delay (sec)
(42
o

N
o

30

20

. .
10 15 20 25 30
Code size (pages)

10 >
5

Figure 12 Time taken to transfer an image to a Mica2
node.

An important observation that we can make from
Figure 12 is that the overhead imposed on Deluge by
Scatter is almost steady as the code size increases. This
is because for applications that are larger by p pages,
the time overhead will increase by p times the time for
the sensor node to hash a page and compare it with the
hash value included in the next page. This is insignificant
compared to the overhead due to signature transfer and
verification, which is independent on the program image
size.

To compare Scatter with Seluge we run another set of
experiments using MicaZ motes. This is because Seluge’s
implementation is based on CC2420 radio component
on MicaZ to reduce its overhead. It uses the hardware
cryptographic support available by that component for
symmetric cryptographic operations and it also uses the
larger packet payload sizes supported by IEEE 802.15.4,
the standard implemented by CC2420. Seluge needs
large packets to accommodate its hash values, but in this
way it also decreases the total number of packets required
for a given program image and therefore decreases the
propagation delay.

Figure 13 shows the total delay to download different
program images from the PC to a MicaZ mote, using
Deluge, Scatter and Seluge. For Seluge we used two
variants, one with packet size equal to 62 bytes and one
with packet of 102 bytes. For Deluge and Scatter we used
the default TinyOS packet size, which is 23. By using
larger packet sizes for them also, it would only decrease
the transfer time further.

Observing Figure 13, we can see the benefits from
using an authentication scheme that is based only to
hash operations, like Scatter, as opposed to a scheme
that uses ECC based public key operations, like Seluge.
Seluge uses TinyECC (Liu and Ning, 2008) on the motes,
which provides an ECC implementation for TinyOS that
includes an ECDSA (Elliptic Curve Digital Signature
Algorithm) module. As a result, Seluge-62 introduces an
average overhead of 255% compared to the completion

180 T

—— Seluge 62
—&— Seluge 102
1601 | —a— Scatter
—— Deluge

Delay (sec)

. . .
5 10 15 20 25 30
Code size (pages)

Figure 13 Time taken to transfer an image to a MicaZ
node.

time of Deluge and Seluge-102 brings it down to 114%.
On the other hand, for Scatter we measure an average
overhead of 24% compared to Deluge.

Let us also note that the lower transmission times
observed in Figure 13 regarding Deluge and Scatter,
compared to the corresponding measurements obtained
for Mica2 in Figure 12, are due to the faster data rate
of the CC2420 radio available in MicaZ. Mica2 uses the
ChipCon CC1000 RF transceiver running at 38.9 kbps,
while MicaZ features a much faster 250 kbps radio.

Finally, after using the key pair we have produced
for authenticating new program images r times (r being
for example 32 or 64), we can no longer use them,
because the security level has dropped below acceptable
levels. So we need to update them, and we use the same
authentication scheme to distribute the new public key
to the motes. To send this new public key to the motes
we sign it using the current secret key, and send it to the
motes just like if it was a new image (only much smaller).
We embed a small bit pattern at the beginning to allow
the motes realize that it is the new public key. In this
way the motes will verify the new public key and start
using it for the next images.

For [=80,k = 8,t =65536,7 = 32, and T = 32 we
calculated the time needed to send a new public key in
one mote in an authenticated way. The new public key
(512 bytes) fits in one page, resulting in 3 pages to be
transmitted in total (including 2 pages for the signature).
Performing this experiment on Mica2, the mote was able
to receive and verify the new public key in 7.01 seconds,
which is a low price to pay, given that we need to perform
this operation after r = 32 code disseminations.

7 Conclusions
In this paper we presented Scatter, an efficient and

practical scheme for authenticated code dissemination
in sensor networks. Scatter imposes asymmetric

11

cryptography properties using symmetric cryptography
primitives, outperforming other proposals that use ECC
or RSA signature schemes. It minimizes the public
key and signature sizes to values that are appropriate
for sensor networks. The verification procedure at the
motes is also time and computationally efficient, since it
involves only hashing and comparison operations.

Scatter integrates these efficient security mechanisms
with the propagation strategies of Deluge to provide
a complete solution of secure code dissemination in
wireless sensor networks. Our experiments with MicaZ
and Mica2 motes demonstrate that Scatter is an efficient
and practical solution, compared to other previous
attempts, since it allows the fast code dissemination that
Deluge offers, adding only a small overhead.

References

American National Standards Institute (1998), ‘ANSI X9.62-
1998, public key cryptography for the financial services
industry: The elliptic curve digital signature algorithm
(ECDSA).

Deng, J., Han, R. and Mishra, S. (2006), Secure code
distribution in dynamically programmable wireless
sensor networks, in ‘Proceedings of the fifth international
conference on Information processing in sensor networks
(IPSN ’06)’, pp. 292-300.

Dutta, P., Hui, J., Chu, D. and Culler, D. (2006), Securing
the Deluge network programming system, in ‘Proceeding
of the b5Hth International Conference on Information
Processing in Sensor Networks (IPSN 2006)’, pp. 326—
333.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer,
E. and Culler, D. (2003), The nesC language: A
holistic approach to networked embedded systems, in
‘Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation
(PLDI ’03)’, ACM, New York, NY, USA, pp. 1-11.

Gennaro, R. and Rohatgi, P. (2001), “How to sign digital
streams”, Information and Computation , Vol. 165,
Duluth, MN, USA, pp. 100-116.

Gura, N., Patel, A., Wander, A., Eberle, H. and Shantz,
S. C. (2004), Comparing elliptic curve cryptography and
RSA on 8-bit CPUs, in ‘Cryptographic Hardware and
Embedded Systems (CHES ’04)’, pp. 119-132.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. and
Pister, K. (2000), “System architecture directions for
networked sensors”, ACM SIGPLAN Notices , Vol. 35,
pp. 93-104.

Hui, J. W. and Culler, D. (2004), The dynamic behavior of a
data dissemination protocol for network programming at
scale, in ‘Proceedings of the 2nd international conference
on Embedded networked sensor systems’, pp. 81-94.

Krontiris, I. and Dimitriou, T. (2006a), Authenticated in-
network programming for wireless sensor networks, in
‘Proceedings of the 5th International Conference on
AD-HOC Networks & Wireless (ADHOC-NOW ’06)’,
pp. 390-403.

12

Krontiris, I. and Dimitriou, T. (2006b), A practical
authentication scheme for in-network programming
in wireless sensor networks, in ‘Proceedings of the
2nd ACM Workshop on Real-World Wireless Sensor
Networks (REALWSN ’06)’, Uppsala, Sweden, pp. 13—
17.

Lanigan, P. E., Gandhi, R. and Narasimhan, P. (2006),
Sluice: Secure dissemination of code updates in sensor
networks, in ‘Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems (ICDCS
’06)’, p. 53.

Liu, A. and Ning, P. (2008), TinyECC: A configurable
library for elliptic curve cryptography in wireless
sensor networks, in ‘Proceedings of the International
Conference on Information Processing in Sensor
Networks (IPSN ’08)’, pp. 245-256.

Liu, A., Oh, Y.-H. and Ning, P. (2008), Secure and DoS-
resistant code dissemination in wireless sensor networks
using Seluge, in ‘Proceedings of the International
Conference on Information Processing in Sensor

Networks (IPSN ’08)’, pp. 561-562.

Merkle, R. (1988), A digital signature based on a conventional
encryption function, in ‘Advances in Cryptology -
CRYPTO ’87’, Vol. 293 of Lecture Notes in Computer
Science, Springer-Verlag, London, UK, pp. 369-378.

Pieprzyk, J., Wang, H. and Xing, C. (2003), Multiple-
time signature schemes against adaptive chosen message
attacks, in ‘Selected Areas in Cryptography (SAC 2003)’,
Springer, pp. 88-100.

Reyzin, L. and Reyzin, N. (2002), Better than BiBa: Short
one-time signatures with fast signing and verifying,
in ‘Proceedings of the T7th Australian Conference
on Information Security and Privacy (ACISP ’02)’,
Springer-Verlag, London, UK, pp. 144-153.

Shaheen, J., Ostry, D., Sivaraman, V. and Jha, S. (2007),
Confidential and secure broadcast in wireless sensor
networks, in ‘IEEE Personal, Indoor, and Mobile Radio
Communications (PIMRC ’07)’, Athens, Greece.

Stathopoulos, T., Heidemann, J. and Estrin, D. (2003),
A remote code update mechanism for wireless sensor
networks, Technical Report CENS-TR-30, University
of California, Los Angeles, Center for Embedded
Networked Computing.

Tan, H., Ostry, D., Zic, J. and Jha, S. (2009), A confidential
and DoS-resistant multi-hop code dissemination protocol
for wireless sensor networks, in ‘Proceedings of the
second ACM conference on Wireless network security
(WiSec ’09)’, ACM, New York, NY, USA, pp. 245-252.

Ugus, O., Westhoff, D. and Bohli, J.-M. (2009), A ROM-
friendly secure code update mechanism for WSNs using a
stateful-verifier 7-time signature scheme, in ‘Proceedings
of the second ACM conference on Wireless network
security (WiSec ’09)’, ACM, New York, NY, USA,
pp. 29-40.

Wang, Q., Zhu, Y. and Cheng, L. (2006), “Reprogramming
wireless sensor networks: challenges and approaches”,
IEEE Network , Vol. 20, pp. 48-55.

