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Abstract— We consider the problem of securing communica-
tion between sensor nodes in large-scale sensor networks. We
propose a distributed, deterministic key management protocol
designed to satisfy authentication and confidentiality, without
the need of a key distribution center. Our scheme is scalable
since every node only needs to hold a small number of keys
independent of the network size, and it is resilient against node
capture and replication due to the fact that keys are localized;
keys that appear in some part of the network are not used again.
Another important property of our protocol is that it is optimized
for message broadcast; each node shares one pairwise key with
all of its immediate neighbors, so only one transition is necessary
to broadcast a message. Furthermore, our scheme is suited for
data fusion and aggregation processing; if necessary, nodes can
“peak” at encrypted data using their cluster key and decide
upon forwarding or discarding redundant information. Finally,
we describe a mechanism for evicting compromised nodes as
well as adding new nodes. A security analysis is discussed and
simulation experiments presented.

I. INTRODUCTION

Sensor networks have attracted much scientific interest
during the past few years. These networks use hundreds to
thousands of inexpensive wireless sensor nodes over an area
for the purpose of monitoring certain phenomena and capture
geographically distinct measurements over a long period of
time (see [1] and [2] for a survey). Several applications in
sensor networks require sensitive information to be delivered
to the base station and to be protected from disclosure to
unauthorized third parties.

The broadcast nature of the transmission medium makes
information more vulnerable than in wired applications. Thus,
security mechanisms such as encryption and authentication are
essential to protect information transfers. However, existing
network security mechanisms are not feasible in this domain,
given the limited processing power, storage, bandwidth and
energy resources. Public-key algorithms, such as RSA are
undesirable, as they are computationally expensive. Instead,
symmetric encryption/decryption algorithms and hashing func-
tions are between two to four orders of magnitude faster [3],
and constitute the basic tools for securing sensor networks
communications.

To develop security mechanisms and protocols for sensor
networks, a necessary requirement is the establishment of a
shared key between pairs of communicating nodes. As there
is no prior knowledge of which nodes will be neighboring
before deployment, a solution would be for every pair of sensor
nodes in the network to share a unique key. However this

is not feasible due to memory constraints. A more scalable
solution is the use of a key common to all sensor nodes in
the network [4]. The problem with this approach is that if
a single node is compromised then the security of the whole
network is disrupted. Furthermore, refreshing the key becomes
too expensive due to communication overhead.

Besides scalability, there are also some other requirements
that need to be considered while selecting a key sharing
approach. A desirable feature is resistance to node capture.
Even if a node is compromised and its key material is revealed,
an adversary should not be able to gain control of other
parts of the network by using this material. Therefore the
compromise of nodes should result in a breach of security that
is constrained within a small, localized part of the network.

Another problem that must be handled well by key manage-
ment schemes is that of simple message broadcast. Usually
nodes establish pairwise keys with their one-hop neighbors,
since in sensor network applications, nodes communicate with
their immediate neighbors. If a node shares a different key (or
set of keys) with each of its neighbors, then it will have to
make multiple transmissions of messages, encrypted each time
with a different key, in order to broadcast a message to all of
its neighbors. In these cases, we believe that transmissions
must be kept as low as possible because of their high energy
consumption rate.

Finally, a closely related problem to that of broadcasting
encrypted messages is the ability to perform aggregation and
data fusion processing [5]. This however can be done only if
intermediate nodes have access to encrypted data to (possibly)
discard extraneous messages reported back to the base station.
The use of pair-wise shared keys effectively hinders data
fusion processing.

II. OUR CONTRIBUTION

In this work we present a security protocol that has the
following properties:

• Resilience to Node Replication. Our scheme offers deter-
ministic security as a single compromised node disrupts
only a local portion of the network while the rest re-
mains fully secured. We designed our protocol without
the assumption of tamper resistance. Once an adversary
captures a node, key materials can be revealed. However,
even if a node is compromised and be used to populate
the network with its clones, key material from one part
of the network cannot be used to disrupt communications
to some other part of it.
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• Energy efficiency. We enable secure communication be-
tween a node and its neighbors by requiring only one
transmission per message. This saves energy as transmis-
sions are among the most expensive operations a sensor
can perform [6].

• Intermediate Node Accessibility of Data. An effective
technique to extend sensor network lifetime is to limit the
amount of data sent back to reporting nodes since this
reduces communications energy consumption [5]. This
can be achieved by some processing of the raw data to
discard extraneous reports. However, this is possible only
when intermediate nodes have access to the protected
data to perform data fusion processing. Although existing
random key pre-distribution schemes provide a secure
path between a source and a destination, nearby nodes
cannot have access to this information as it is highly
unlikely they possess the right key to decrypt data.

• Scalability. The number of keys stored in sensor nodes is
independent of the network size.

• Easy Deployment and Node Addition. Our protocol en-
ables a newly deployed network to establish a secure
infrastructure quickly using only local information and
total absence of coordination. Furthermore, even if nodes
die because their energy is depleted, the network can
be “refreshed” by adding new nodes in a secure and
authenticated way.

The organization of the rest of the paper is as follows: In the
next section we discuss related work on similar architectures.
In Section IV, we describe our security protocol and prove
each of the claims we made in this introduction. In Section
V, we give experimental evidence about the scalability of the
protocol (in terms of the keys stored in each node) as well
as the local resiliency (in terms of nodes in each cluster). In
Section VI we show that our protocol is secure against certain
types of attacks and finally, we conclude in Section VII.

III. RELATED WORK

Basagni et al.’s pebblenets architecture [4] uses a global key
shared by all nodes. Having network wide keys for encrypting
information is very good in terms of storage requirements
and energy efficiency as no communication is required among
nodes to establish additional keys. It suffers, however, from
the obvious security disadvantage that compromise of even a
single node will reveal the universal key. Since one cannot
have keys that are shared pair-wise between all nodes in the
network, a key pre-distribution scheme must be used.

There exist several schemes [7], [8], [9], [10] proposed in
the literature that suggest random key pre-distribution: Before
deployment each sensor node is loaded with a set of symmetric
keys that have been randomly chosen from a key pool. Then
nodes can communicate with each other by using one or more
of the keys they share according to the model of random key
pre-distribution used. These schemes offer network resilience
against node capture but they are not “infinitely” scalable.
As the size of the sensor network increases, the number of
symmetric keys needed to be stored in sensor nodes must also

be increased in order to provide sufficient security of links.
However, the more keys are stored in a node, the more links
become compromised (even not neighboring ones) in case of
node capture. Hence these schemes offer only “probabilistic”
security as other links may be exposed with certain probability.

We now review some other proposals that use security archi-
tectures similar to ours. In LEAP [11], starting from a master
key Km, every node creates a cluster key that distributes
to its immediate neighbors using pair-wise keys that shares
with each one of them. In this case, however, clusters highly
overlap so every node has to apply a different cryptographic
key before forwarding the message. While this scheme offers
deterministic security and broadcast of encrypted messages,
it has a more expensive bootstrapping phase and increased
storage requirements as each node must set up and store a
number of pair-wise and cluster keys that is proportional to
its actual neighbors.

We have discovered however, that even if the master key is
deleted, the LEAP protocol can be attacked. More specifically
an attacker may force a sensor node to compute pairwise keys
with other (or all) nodes in the network. This is achieved
by having the attacker broadcast a large number of HELLO
messages during the neighborhood discovery phase (nothing
prevents her from doing so). The recipient node, will compute
all the pairwise secret keys according to the protocol. Then,
once the neighbor discovery phase terminates, an attacker can
compromise a sensor node and have in her procession a key
that is shared between the compromised node and all other
nodes in the network.

Slijepcevic et al. [12] propose dividing the network into
hexagonal cells, each having a unique key shared between its
members. Nodes belonging to the bordering region between
neighboring cells store the keys of those cells, so that traffic
can pass through. The model works under the assumption
that sensor nodes are able to discover their exact location,
so that they can organize into cells and produce a location-
based key. Moreover, the authors assume that sensor nodes
are tamper resistant, otherwise the set of master keys and the
pseudo-random generator, pre-loaded to all sensor nodes, can
be revealed by compromising a single node and the whole
network security collapses. Those assumptions are usually too
demanding for sensor networks.

IV. SECURITY PROTOCOL

In this section we first describe a localized algorithm for
key establishment in sensor networks (Sections IV-A and IV-
B) and then provide a scheme that utilizes the established keys
in order to provide secure communication between a source
node and the base station (Section IV-C). The phases of the
protocol can be summarized as follows:

1) Initialization phase that is performed before sensor
nodes are deployed.

2) Cluster key setup phase that splits the network into
disjoint sets (clusters) and distributes a unique key to
each cluster. That key is shared between all the cluster
members, as well as the nodes that are one-hop away
from the cluster.
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3) Secure communication phase that provides confiden-
tiality, data authentication, and freshness for messages
relayed between nodes towards the base station.

In what follows, we describe in details the three phases of
our protocol using the notation below:

M1|M2 Concatenation of M1 and M2.
EK(M) Encryption of message M , with key K

MACK(M) Message Authentication Code (MAC) of
message M using key K.

A. Initialization

Sensor nodes are assigned a unique ID that identifies them
in the network, as well as three symmetric keys. Since wireless
transmission of this information is not secure, it is assigned to
the nodes during the manufacturing phase, before deployment.
In particular the following keys are loaded into sensor nodes:

Node key Ki: Shared between each node i and the base
station. This key will be used to secure information sent
from node i to the base station. If we are interested in data
fusion processing this key should not be used to encrypt the
sensed data D that must reach the base station, as otherwise
intermediate nodes will not be able to evaluate and possibly
discard the data.

Cluster key Ki
c: Shared between each node i and the base

station. This key will be used only by those nodes that will
become clusterheads and it will be the cluster key. These are
the keys used to forward information to the base station in a
hop-by-hop manner.

Master key Km: A master key shared among all nodes,
including the base station. This key will be used to secure
information exchanged during the cluster key setup phase.
Then it is erased from the memory of the sensor nodes.

The base station is then given all the ID numbers and keys
used in the network before the deployment phase.

B. Cluster key setup

In this section we describe how sensor nodes use the pre-
deployed key material in order to form a network where nodes
can communicate with each other using a set of trusted keys.

The cluster key setup procedure is divided into two phases:
organization into clusters and secure link establishment. Dur-
ing the first phase the sensor nodes are organized into clusters
and agree on a common cluster key, while in the second phase,
secure links are established between clusters in order to form
a connected graph.

An implicit assumption here is that the time required for
the underlying communication graph to become connected
(through the establishment of secure links) is smaller than
the time needed by an adversary to compromise a sensor
node during deployment. As security protocols for sensor
networks should not be designed with the assumption of
tamper resistance [13], we must assume that an adversary
needs more time to compromise a node and discover the
master key Km (see also [11] for a similar assumption.) In
the experimental section we give evidence that this is indeed
the case.
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Fig. 1. Distribution of nodes to clusters.

1) Organization into clusters: In this phase, the creation
of clusters happens in a probabilistic way that requires the
nodes to make at most one broadcast. Each node i waits a
random time (according to an exponential distribution) before
broadcasting a HELLO message to its neighbors declaring its
decision to become a cluster head. This message is encrypted
using Km and contains the IDi of the node, its key Ki

c and
an authentication tag:

EKm
(IDi|K

i
c|MACKm

(〈IDi|K
i
c〉)

Upon receiving a HELLO message, a node decrypts and
authenticates the message. Then reacts in the following way:

1) If the node has not made any decision about its role yet,
it joins the cluster of the node that sent the message
and cancels its timer. No transmission is required for
that node. The key that it is going to be using to secure
traffic is Kc = Ki

c.
2) If the node has already decided its role, it rejects the

message. This will happen if the node has already
received a HELLO message from another node and
became a cluster member of the corresponding cluster,
or the node has sent a HELLO message being a cluster
head itself.

When this phase is over, all nodes will be either cluster
heads or cluster members, depending on whether they sent a
HELLO message or received one. However, there is a case
for a node to send a HELLO message after all its neighboring
nodes have decided their role, and thus become a head of
a cluster with no members. Although this possibility can be
minimized by the right exponential distribution of the time
delays that nodes send the HELLO messages, they do not
affect the proper running of the protocol. In Figure 1 we
show the distribution of nodes to clusters for densities (average
number of neighbors per sensor) equal to 8 and 20. As it can
be seen in the figure, for smaller densities a larger percentage
of nodes forms clusters of size one. However, the probability
of this event decreases as the density becomes larger.

At the end of this phase each cluster will be given an
identifier CID, which can be the cluster head’s ID. All nodes
in a cluster will be sharing the same key, Kc, which is the key
Ki

c of the cluster head. From this point on, cluster heads turn
to normal members, as there is no more need for a hierarchical



4

structure. This is important since cluster based approaches
usually create single points of failure as communications must
usually pass through a clusterhead. Figure 2 shows an example
topology where three clusters have been created with CIDs
13, 9 and 19.

As it can be seen from Figure 2, the maximum distance
between two nodes in a cluster is two hops. Since all nodes
in a cluster share a common key Kc, we need to keep the
size of the clusters as small as possible in order to minimize
the damage done by the compromise of a single node. In the
experimental section, we give evidence that indeed clusters
contain in average a small number of nodes independent of
the network size.

2) Secure link establishment: In the second phase, all nodes
get informed about the keys of their neighboring clusters.
We need this phase in order to make the whole network
connected since up to this point it is only divided into clusters
whose nodes share a common key. We say that a node is
neighbor of a cluster CID when that node has within its
communication range at least one member of that cluster. This
phase is executed with a simple local broadcast of the cluster
key by all nodes. The message sent contains the tag and the
CID, encrypted using Km:

EKm
(CIDi|Kc|MACKm

(〈CIDi|Kc〉)

Nodes of the same cluster simply ignore the message,
while any nodes from neighboring clusters will store the
tuple 〈CID,Kc〉 and use it to decrypt traffic coming from
that cluster, as explained in the next section. If the message
has been sent from a member of the same cluster, then that
message should be ignored.

We must emphasize again that the total time of both steps
is too short for an adversary to capture a node and retrieve the
key Km (see also Figure 9 in Section V for a justification of
this claim.) This is also the reason for using the same key Km

for encryption and authentication during the current secure link
establishment phase. Nevertheless an adversary could have
monitored the key setup phase and by capturing a node at
later time it could retrieve all cluster keys. Therefore after the
completion of the key setup phase, all nodes erase key Km

from their memory.
At this point, each node i of the sensor network will have

its key Ki and a set S of cluster keys that includes its own
cluster key and the keys of its neighboring clusters. The total
number of the keys that a node will have to store depends
on the number of its neighboring clusters, thus not all cluster
members store the same number of keys. (In the experimental
section we give evidence that each node needs to store on
average a handful of cluster keys). Most importantly however,
the number of keys that each node gets is independent of
the network size and therefore there is no upper limit on the
number of sensor nodes that can be deployed in the network.

We illustrate the operations of the cluster key setup phase
with the following example. Consider the sensor network
depicted in Figure 2. Three clusters with CIDs 13, 9 and 19
have been formed from the first step. The figure also shows the
transmission radius of nodes 25, 17 and 5. As it can be seen,
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Fig. 2. An example topology during the key setup phase. Communication
ranges of nodes 25, 17 and 5 are also shown.

node 25 has two neighboring clusters, since node 17 from
cluster 13 and nodes 5 and 1 from cluster 9 are within its
communication range. Therefore node 17 will store 3 cluster
keys. Likewise, nodes 17, 5 and 1 also have two neighboring
clusters and will store 3 cluster keys each. On the other hand,
node 6 is within the range of node’s 17 but outside the radius
of any node from cluster 19, therefore it will only store 2
cluster keys.

C. Secure message forwarding

In this section we describe how information propagating
towards a base station can be secured to guarantee confiden-
tiality, data authentication, and freshness.

Here we make the assumption that sensor readings must
first be encrypted (Step 1 in the description below) and then
authenticated in a hop-by-hop manner (Step 2) as data is
forwarded to the base station through intermediate nodes. If
we are interested in data fusion processing then Step 1 should
be omitted. It is only used when we want to make sure that
sensor readings can only be seen by the base station.

1) Step 1 (Optional): To achieve the security requirements
for the data D that will be exchanged between the source node
and the base station, we encrypt the data as shown in Figure 3.
A good security practice is to use different keys for different
cryptographic operations; this prevents potential interactions
between the operations that might introduce weaknesses in a
security protocol. Therefore we use independent keys for the
encryption and authentication operations, Kencr and KMAC

respectively, which are derived from the unique key Ki that
node shares with the base station. For example we may take
Kencr = FKi

(0) and KMAC = FKi
(1), where F is some

secure pseudo-random function.
Encryption is performed through the use of a counter C that

is shared between the source node and the base station. We do
this in order to achieve semantic security; an adversary will not
be able to obtain partial information about a plaintext, even if it
is the same plaintext that is encrypted multiple times. This can
also be achieved through randomization but then the random
value used in the encryption of the message must also be
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y1 ← EKencr
(D)

t1 ← MACKMAC
(y1)

c1 ← y1|t1

Fig. 3. Step 1 for secure communication between source node and base
station. This step is applied by the source node alone.

transmitted. The counter approach results in less transmission
overhead as the counter is maintained in both ends. If counter
synchronization is a problem (usually the receiver can try a
small window of counter values to recover the message) then
the counter or the random value used can be sent alongside
the message. We leave the choice to the particular deployment
scenario as one alternative may be better than the other.

2) Step 2 (Required): Since the encrypted data must be
forwarded by intermediate nodes in order to reach the base
station, we need to further secure the message so that an
adversary cannot disrupt the routing procedure. Thus, no
matter what routing protocol is followed, intermediate nodes
need to verify that the message is not tampered with, replayed
or revealed to unauthorized parties, before forwarding it.

To secure the communication between one-hop neighbors,
we use the protocol described in Figure 4. Each node (in-
cluding the source node) uses its cluster key to produce the
encryption key K ′

encr and the MAC key K ′

MAC . These keys
are used to secure the message produced by Step 1, before it
is further forwarded. (As we emphasized previously, if we are
only interested in hop-by-hop encryption and authentication,
Step 1 should be omitted in which case c1, in message y2

below, is simply the data D.) Since the nodes that will receive
that message don’t know the sender and therefore the key that
the message was encrypted with, the cluster ID is included
in c2. This way intermediate sensors will use the right key in
their set S to authenticate the message.

τ ← time()
y2 ← EK′

encr
(c1, τ, CID)

t2 ← MACK′

MAC
(y2)

c2 ← CID|y2|t2

Fig. 4. Step 2 for secure communication between source node and base
station. This step is applied by all intermediate nodes, besides the source
node.

If authentication is not successful, the message should be
dropped since it is not a legitimate one. Otherwise, each node
will apply Step 2 with its own cluster key to further forward
the message. The fact that this key is shared with all of its
neighbors, allows the node to make only one transmission per
message. Notice that this is the point where our protocol differs
from random key pre-distribution schemes. To broadcast a
message in such a scheme the transmitter must encrypt the
message multiple times, each time with a key shared with
a specific neighbor. And this, of course, is extremely energy
consuming.

To continue the example shown on Figure 2, assume that
node 14 must send a message m towards the base station that

lies in the direction of node 4. It first encrypts and tags the
message to produce a ciphertext c1 according to the protocol
shown on Figure 3 and then wraps this to produce an encrypted
block c2 according to the specifications shown on Figure 4.
When ready, it broadcasts c2 to its neighbors. Eventually an
encapsulation of c1 will reach node 12, maybe through node
10. This node will decrypt and authenticate the message since
it shares the same cluster key as node 14 and once all the
checks are passed, it will re-encrypt c1 and forward it to its
neighbors. One of them is node 8 which is a member of cluster
with CID = 9, but also within the communication range of
node 12. This node will look at its set of cluster keys S and
use the one that shares with node 12 (the one corresponding
to CID=13). Upon success it will re-encrypt the message with
its cluster key and forward it to its neighbors. So, this example
demonstrates how nodes that lie at the edge of clusters will
be able to “translate” messages that come from neighboring
clusters and be able to authenticate them in a hop-by-hop
manner.

To increase security and avoid sending too much traffic
under the same keys, cluster keys may be refreshed period-
ically. To support such functionality, sensor nodes can repeat
the key setup phase with a predefined period in order to form
new clusters and new cluster keys. Since Km is no longer
available to the nodes, the current cluster key may be used by
the nodes instead. The fact that each node can communicate
with all of its neighbors using the current cluster key makes it
possible to broadcast a HELLO message in a secure way. The
message will contain the new cluster key, created by a secure
key generation algorithm embedded in each node. Since the
key setup phase requires very low communication overhead
(as it will be showed in the next section) and takes only a
short time to complete, the refreshing period can be as short
as needed to keep the network safe. Alternatively, if we don’t
like the fact that certain nodes are assigned the task of creating
new keys (as they may be the compromised ones), we can
renew the cluster keys by periodically hashing these keys at
fixed time intervals.

D. Evicting compromised nodes

Before we discuss a mechanism for dynamically inserting
new nodes into the network, we need a scheme to evict
compromised nodes and revoke their corresponding keys.
Since we are not dealing with intrusion detection in this
work, we assume the existence of a detection mechanism
that informs the base station about compromised nodes (see
also the related work of [14] on detecting forged aggregation
values). Once this is done, the base station is aware of the
cluster the node belongs to as well as its neighboring clusters.
We further assume that a sensor node cannot be compromised
during the setup time of our system, either during the initial
setup phase, or during the new node addition phase. This is
a valid assumption, since the time needed for the setup phase
is small in comparison to the time needed for the node to be
captured.

If a node is compromised, the attacker cannot insert dupli-
cates of that node in groups other than the group it originated
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Generate
←−−−−−−

K0
F (K1)
←−−−− K1 ← . . .← Kn−1

F (Kn)
←−−−− Kn

Use/Reveal
−−−−−−−−→

Fig. 5. Construction of an one-way key chain

from or its neighboring ones as each node may contain cluster
keys from nearby clusters. Thus when a node is compromised
all the corresponding keys (and hence the clusters) must
be revoked. Therefore, it suffices to provide a mechanism
for cluster revocations transmitted by the base station to be
authenticated and eventually for nodes to revoke cluster keys
within their neighborhoods.

We will base the revocation scheme on the use of one-way
hash key chains. Figure 5 shows that an one-way key chain is
a sequence of numbers, K0,K1, . . . ,Kn−1,Kn such that

for all l, 0 < l ≤ n, Kl−1 = F (Kl),

where as usual F is a secure pseudo-random function that is
difficult to invert. Basically, during network setup, the base sta-
tion generates the one-way hash chain of length n and commits
to the first key K0. This key may be preloaded to each node
during manufacturing. Whenever the base station has a new
revocation command to disseminate to the nodes, it attaches
to the command the next key from the hash chain. A node
receiving a command encrypted with the group key can verify
its authenticity by checking whether the new commitment Kl

generates the previous one through the application of F . When
this is the case, it replaces the old commitment Kl−1 with the
new one in its memory and accepts the command as authentic.
Otherwise it rejects it.

When nodes receive such lists of compromised clusters,
they verify the authenticity of the messages and then delete
the corresponding cluster keys from their memories. This
effectively prevents compromised nodes to inject false data in
the network or create clones of themselves in nearby groups.

E. Addition of new nodes

This section address the problem of refreshing the network
as sensors usually have limited lifetime and usually die of
energy depletion. We assume that new sensors are arbitrary
deployed. As they cannot be preassigned to a specific cluster,
they must i) associate themselves to an existing cluster, ii)
become informed about neighboring clusters and iii) retrieve
and store the corresponding cluster keys. Each new node
comes equipped with a master key KMC that can be used
to generate the relevant cluster keys as it will be explained
below.

Every new node transmits a hello message to its neighbors
indicating its will to become a member of some existing
cluster. The message contains the ID of the new node. Nodes
receiving this message will respond with the cluster id they
belong to, authenticated using their cluster key Kc. This
is necessary in order to prevent an adversary for realizing

the following attack. The adversary may send fake messages
containing various cluster ids. When the new node makes the
association between the cluster id and the cluster key and
store it in its memory, the adversary can later compromise
the node thus having acquired the cluster key of any cluster
in the network. To prevent this type of impersonation attack
the response sent by existing nodes is simply

CID,MACKC
(CID).

A new node receiving such a collection of cluster id’s will
consider itself a member of the first such cluster while the rest
will be the neighboring ones. We need now a way to associate
each cluster id CID with the corresponding cluster key. We
assume here that the cluster keys K i

c of the original nodes
were formed using a master key KMC through the application
of some pseudorandom function F . The use of a secure one
way function F will prevent an adversary who compromised
a node and found its cluster key to recover the master key
KMC and hence the cluster keys of other nodes. Using F , the
cluster key of the i-th node is simply given by

Ki
c = F (KMC , i).

Each new node can use KMC to generate the various cluster
keys and store them in its memory. Then it can participate
in encrypting and forwarding messages just like the original
nodes. When this phase is over, the master key KMC is deleted
from the memory of the nodes.

V. EXPERIMENTAL ANALYSIS

We simulated a sensor network to determine some parameter
values of our scheme. We deployed several thousands of
nodes (2500 to 3600) in a random topology and run the key
setup phase simulated in SensorSimII[15]. In this simulator,
we defined the number of nodes and their communication
range in order to set various values for the network density.
Of particular interest is the scalability, the communication
overhead and memory requirements of our approach.

The storage requirements of our approach are determined
by the number of cluster keys stored in each node. According
to the analysis of the previous sections, this number depends
on the network density. Figure 6 shows the average number
of cluster keys that each node stores as a function of the
average number of neighbors per node (density of network).
The number of cluster keys also indicates the number of
neighboring clusters that each node has. As is obvious from
the figure, the number of stored keys is very small and
increases with low rate as the number of neighbors increases,
requiring negligible memory resources from the sensor node.
We must emphasize here that the number of required keys
remains independent of the actual network size. We performed
experiments with various network sizes and we found that
the curves matched exactly (modulo some small statistical
deviation). Thus our protocol behaves the same way in a
network with 2000 or 20000 nodes.

In Figure 7 we further show the average number of nodes
per cluster for various network densities. Nodes of the same
cluster share a common cluster key, and thus an adversary,
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Fig. 6. Average number of cluster keys held by sensor nodes as a function
of network density
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Fig. 7. Average number of nodes in clusters as a function of network density

upon compromising such a node, can also control the commu-
nication links of the rest of cluster nodes. Thus, having small
clusters, as is indicated in the figure, minimizes the damage
inflicted by the compromised node and prevents its spreading
to the rest of the network.

The communication traffic required by the key setup phase
is partly due to the number of messages sent by the cluster
heads to their cluster members during phase one, and partly
due to the messages sent by all nodes of the network during
the link establishment phase. The former quantity depends
on the number of clusterheads and is shown in Figure 8.
The second quantity, is always constant and equal to n, the
number of nodes in the network. Bearing in mind that the key
setup phase is executed only once, the total communication
overhead due to that phase is kept very low. Further evidence
to this fact is given in Figure 9, where the average number of
messages required per node to set up the keys is shown. Thus
the overall time needed to establish the keys is a little more
than transmission of one message plus the time to decrypt the
material sent during this phase.

VI. SECURITY ANALYSIS

We now discuss one by one some of the general attacks
[16] that can be applied to routing protocols in order to take
control of a small portion of the network or the entire part of
it.
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Fig. 8. Percentage of cluster heads with respect to total sensor nodes in the
network
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Fig. 9. Number of messages exchanged per node for organization into
clusters and link establishment in a network of 2000 nodes and various
densities.

• Spoofed, altered, or replayed routing information. As
sensor nodes do not exchange routing information, this
kind of attack is not an issue.

• Selective forwarding. In this kind of attack an adversary
selectively forwards certain packets through some com-
promised node while drops the rest. Although such an
attack is always possible when a node is compromised,
its consequences are insignificant since nearby nodes can
have access to the same information through their cluster
keys.

• Sinkhole and wormhole attacks. Since all nodes are con-
sidered equal and there is not a distinction between more
powerful and weak nodes, an adversary cannot launch
attacks of this kind. Furthermore, in our protocol such an
attack can only take place during the key establishment
phase. But the authentication that takes place in this phase
and its small duration, as we described in the previous
section, makes this kind of attack impossible.

• Sybil attacks. Since every node shares a unique symmetric
key with the trusted base station, a single node cannot
present multiple identities. An adversary may create
clones of a compromised node and populate them into
the same cluster or the node’s neighboring clusters but
this doesn’t offer any advantages to the adversary with
respect to the availability of the information to the base
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station.
• Hello flood attacks. In our protocol, nodes broadcast a

HELLO message during the cluster key setup phase in
order to announce their decision to become clusterheads
and distribute the cluster key. Since, however, messages
are authenticated this attack is not possible. (A necessary
assumption for all key establishment protocols is of
course that the duration of this phase is small so that
an adversary cannot compromise a node and obtain the
key Km. In the previous section we presented evidence
that this is indeed the case).
However, this kind of attack is possible during key-
refresh. If we assume that a laptop-class attacker has
compromised a node and retrieved its cluster keys then
she could broadcast such a HELLO message during a
key refresh phase and could attract nodes belonging to
neighboring clusters as well and form a new larger cluster
with himself as a clusterhead. One way to defend against
this is to constraint the key-refresh phase within clusters,
i.e. not allow new clusters to be created. Therefore, cluster
keys will be refreshed within the same clusters, and an
adversary cannot take control of more nodes than she
already has, that is the nodes within the same cluster.
A better way, however, which makes this kind of attack
useless, is to refresh the keys by hashing instead of letting
nodes generate new ones.

• Acknowledgment spoofing. Since we don’t rely on link
layer acknowledgements this kind of attack is not possible
in our protocol.

VII. CONCLUSIONS

We have presented a key establishment protocol that is
suitable for sensor network deployment. The protocol provides
security against a large number of attacks and guarantees that
data securely reaches the base station in an energy efficient
manner. Our protocol is based on hop-by-hop encryption,
allowing nodes to share keys only with neighboring nodes.
No time synchronization or location knowledge is needed.
The protocol has a number of important characteristics among
which are:

• Resiliency against node replication. This is due to the fact
that keys are localized. After a deployment phase, nodes
share a handful of keys to securely communicate with
their neighbors. Thus compromised keys in one part of
the network do not allow an adversary to obtain access
in some other part of it.

• Efficient broadcasting of encrypted messages. When a
node wants to broadcast a message to its neighbors it does
not have to make multiple transmissions encrypted each
time with a different key. We achieve this by encrypting
messages with a cluster key which is shared between
neighboring nodes. This makes our scheme very energy
efficient.

• Intermediate node accessibility of data. When multiple
nodes receive the same message, some of them may
decide not to forward it. However, this is not possible
unless nodes can have access to encrypted data. Using

our approach, nodes can “peak” at encrypted information
using their cluster key and decide upon forwarding or
discarding redundant messages thus enabling data aggre-
gation processing.

• Scalability. Our protocol scales very well as the key
establishment phase requires only local information and
no global coordination. Furthermore the keys that need to
be stored at each node do not depend on the size of the
sensor network but only on its density (the average num-
ber of neighbors per node). Thus our protocol behaves
similarly in networks of 2000 or 20000 nodes as long as
the density is the same.

• Eviction of compromised nodes and addition of new ones.
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