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Abstract—In this work we study the problem of Intrusion calization [3], secure aggregation [4] and secure time
Detection is sensor networks and we propose a lightweightlseme synchronization [5].
that can be applied to such networks. Its basic characterigt ) . .
is that nodes monitor their neighborhood and collaborate wih All mentioned security protocols are based on particular

their nearest neighbors to bring the network back to its normal assumptions about the nature of attacks. If the attacker is
operational condition. We emphasize in a distributed apprach in  “weak”, the protocol will achieve its security goal. This ams
which, even though nodes don't have a global view, they canit 1ot an intruder ispreventedfrom breaking into a sensor

detect an intrusion and produce an alert. We apply our design . . . .
principles for the blackhole and selective forwarding attaks by network and hinder its proper operation. If the attacker is

defining appropriate rules that characterize malicious belavior. “5”0_”9" (i.e., beh_aves more maliciousl)_/), therg is a non-
We also experimentally evaluate our scheme to demonstratési negligible probability that the adversary will break in.deise

effectiveness in detecting the afore-mentioned attacks. of their resource constraints, sensor nodes usually cannot
deal with very strong adversaries. So what is needed is a
|. INTRODUCTION second line of defense: An Intrusion Detection System (IDS)

A wireless sensor network (WSN) is a network of chea}'?at car_1c_ietecta third party’s a_ltt_empts of exploiting possible
and simple processing devices (sensor nodes) that arqm“iﬂnsecurltles andwarn for ma_I|C|ous attacks, even if these
with environmental sensors for temperature, humidity, ared  21tacks have not been experienced before.
can communicate with each other using a wireless radio
device. Most of the applications in WSNs require the unaRelated work

tended operation of a large number of sensor nodes. Thigniysion detection is an important aspect within the bevad
raises immediate problems for administration and uti@at ;a5 of computer security, in particular network secusty
Even worse, some times it is not possible to approach thg attempt to apply the idea in WSNs makes a lot of sense.
deployment area at all, like for example in hostile, dangsrooyever, there are currently only a few studies in this area.

environments or military applications. So, sensor networly sijva et al. [6] and Onat and Miri [7] propose similar
need to become autonomous and exhibit responsiveness systems, where certain monitor nodes in the network

adaptability to evolution changes in real time, withoutletb  are responsible for monitoring their neighbors, looking fo
user or administrator action. intruders. They listen to messages in their radio range and
This need is even more imperative when it comes to securifipre in a buffer specific message fields that might be useful
threats. The unattended nature of WSNs and the limitgslan IDS system running within a sensor node, but no details
resources of their nodes make them susceptible to attaclys. Are given how this system works. In these architecturesethe
defensive mechanism that could protect and guarantee thgiho collaboration among the monitor nodes. It is concluded
normal operation should be based on autonomous mechaniggs bhoth papers that the buffer size is an important factor
within the network itself. that greatly affects the rate of false alarms.
Currently, research on _providing secur_ity solutions for | oo et al. [8] and Bhuse and Gupta [9] describe two more
WSNs has focused mainly in three categories: IDSs for routing attacks in sensor networks. Both papers
1) Key managementA lot of work has been done [1] in assume that routing protocols for ad hoc networks can also
establishing cryptographic keys between nodes to enable applied to WSNs: Lot al. [8] assume the AODV (Ad
encryption and authentication. hoc On-Demand Distance Vector) protocol while Bhuse and
2) Authentication and Secure Routin§everal protocols Gupta [9] use the DSDV and DSR protocols. Then, specific
[2] have been proposed to protect information froroharacteristics of these protocols are used like “number of
being revealed to an unauthorized party and guaranteaite requests received” to detect intruders. However,uto o
its integral delivery to the base station. knowledge, these routing protocols are not attractive éossr
3) Secure servicesCertain progress has been made inetworks and they have not been applied to any implementa-
providing specialized secure services, like secure lgen that we are aware of.



More extensive work has been done in intrusion detectidinat an IDS system for sensor networks must satisfy the
for ad hoc networks [10]. In such networks, distributed anf@llowing properties:

cooperative IDS architectures are also preferable. Retail 1) Localize auditing An IDS for sensor networks must
distributed designs, actual detection techniques and feet work with localized and partial audit data. In sensor

formance have been studied in more depth. While also being  networks there are no centralized points (apart from the
ad hoc networks, WSNs are much more resource constrained. pase station) that can collect global audit data, so this

We are unaware of any work that has investigated the issue of  approach fits the sensor network paradigm.

intrusion detection in a general way for WSNs. In this paper 2) Minimize resourcesAn IDS for sensor networks should
we therefore attempt to move towards that direction, d@lnln utilize a small amount of resources. The wireless net-
the requirements, studying the possible design choices and \ork does not have stable connections, and physical
proposing a specific modular architecture appropriatedds resources of network and devices, such as bandwidth
in WSNs. and power, are limited. Disconnection can happen at any
time. In addition, the communication between nodes for
intrusion detection purposes should not take too much
of the available bandwidth.

Trust no nodeAn IDS cannot assume any single node
is secure. Unlike wired networks, sensor nodes can
be very easily compromised. Therefore, in cooperative
algorithms, the IDS must assume thrad node can be
fully trusted.

Be truly distributed That means data collection and
analysis is performed on a number of locations. The
distributed approach also applies to execution of the

Contributions

While an adversary can completely take over nodes and
extract their cryptographic keys [11], we assume that such a 3)
adversary cannot “outnumber” legitimate nodes by replcat
captured nodes or introducing new ones in sufficiently many
parts of the network. This assumption is needed because an
IDS for WSNs should exploit the massive parallelism in such a
network to detect intrusion attempts. Particularly nastgcks 4
to detect are thdlackholeand selective forwardingattacks
[12], in which a captured sensor node refuses to forward all

or a subset of the messages it receives. detection algorithm and alert correlation.
The constribution of this paper is threefold: 5) Be secureAn IDS should be able to withstand a hostile
1) First, we review the basic architectures of IDS systems  attack against itself. Compromising a monitoring node
and we elaborate on which is the most appropriate for  and controlling the behavior of the embedded IDS agent

sensor networks. We believe this is important as it will should not enable an adversary to revoke a legitimate
enable further work in the area that will also take into node from the network, or keep another intruder node
consideration the special properties of such networks. undetected.

2) Second, we design an IDS to detect blackhole and
selective forwarding attacks [12], basedspecification- I1l. INTRUSION DETECTION INWSN
based detectigrrequiring only small amounts of com- In this section we develop an IDS architecture based on
munication and computational resources. the above design goals. We break this into three parts., First

3) Finally, we demonstrate the effectiveness of our scheme talk about auditing mechanisms, then about detection
by measuring the detection accuracy in a realistic siraigorithms and finally about decision making techniques. Fo
ulated environment. each part we present the available solutions and we elaborat

The remainder of this paper is organized as follows. Bn which is more appropriate for sensor networks. Then we

Section Il we elaborate on the requirements that an IDS apply our findings to detect blackhole and selective foriveayd
sensor networks should have and in Section Il we build stefd-2] attacks.

by-step our proposed architecture. Then we present thalbver, . . .
dgsignpin a rrr:or% modular and generalized foprm in Section IO.‘ Intrusion Detection Architecture

The performance of the proposed IDS is evaluated in Section VIn sensor networks, most adversaries would target the

through simulations. Finally, Section VI concludes the grap routing layer, since that allows them to take control of the
information flowing in the network. Besides, sensor network

Il. REQUIREMENTS FORIDSS IN SENSORNETWORKS are mainly about reporting data back to the base station, and

In this section we elaborate on the requirements that an I@&rupting this process would make an attack a successéul on
system for sensor networks should satisfy. To do so, one (&, for such networks, the most appropriate architecture fo
to look at the specific characteristics of these networkshEaan IDS would benetwork-basedas opposed tdost-based
sensor node has limited communication and computatiofalnetwork-based IDS uses raw network packets as the data
resources and a short radio range. Furthermore, each nodsoisrce. It listens on the network and captures and examines
a weak unit that can be easily compromised by an adversangividual packets in real time.
[11], who can then load malicious software to launch an Since all communication in the WSN is conducted over the
insider attack. air and a node can overhear traffic passing from a neighboring

In this context, a distributed architecture, based on nodede, nodes can mutually check network traffic. For example,
cooperationis a desirable solution. In particular, we requirén [13] an architecture for ad-hoc networks is proposed,r&@he
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Fig. 1. Node B is selectively forwarding packets to nod&. Node A \ y
promiscuously listens to nodB’s transmissions. N

nodes are partitioned in clusters, and only the clusteddiea 79 2 NodesA, ¢, D and I can be watchdogs of the link — 5.
are responsible for monitoring the traffic within their ders.
However, a single monitor node fails to meet the “trust no B of anything
node” requirement, since it could be captured by the adwersa |
and force the network to isolate another legitimate node, From the abov_e cases we can conclude that the watchdog
Instead, a certain fraction of nodes in an area should agpééoroach Sh(?u'd mvolve mfor_matlonfrom more ”‘?” one node
on an observation. If the number of nodes that can form sugf " our Intrusion detect!on system we require that any
a detection quorum is larger than the number of nodes 4 er neighbor OB that- can Il_st_en to_the pqcketg this node is
can be captured by an adversary in the specific area, a simgﬁgdmg or receving will parnmpgte in the intrusion dgten
majority vote can be used to form a decision. rocedur_e. In particular, for a ImlA_ — B _the WatCthQ.
The requirement of a majority vote is also necessary o d(—‘:‘s wil be, all the nodes Fhat re_5|de within the intersecti
other reasons as well. To see why, let us use neighb0 rAS and B's radio range, including nodd. For example,

monitoring for detecting selective forwarding attacks emsor In Figure 2, Fhe .nodesl, C, D andE can be waichdogs for
Ige communication betweed and B.

networks. Neighboring nodes can easily monitor the bemavi We have simulated random topologies 100 uniforml
of a node to see whether it forwards correctly the packetsdit = have simulated random topologles unrtformly

. . i istributed nodes and calculated the average number ofiwatc
[iZ]e Ivseushpzzlz t(r:1aart] ;Ea(icl)(r:st;\)glljl?jl?gllgvv(vittchk:adg,g?h&pgi:h dogs for different network densities. What we have found
C _) D for the example shown in Figure 1. Nodé can is that for any communication link between two nodes and
tell if node B forwards the packet to nod€, by listening for any r_‘e‘WO”‘ d_ensity, the numbe.r of Watchdqgs on the
promiscuouslyto node B’s transmissions. By promiscuouslyaverage is approximately half the neighborhood size. o, fo

we mean that since nod# is within range of node3, it can z\):gpf’nijnmze?((e)tfwv(\:g:cr\?:jh()er: fgfgis l?r?ﬁleigec'%hsk;fg the
overhear communications to and frofh 9 9 y ’

We can see now why there are more reasons that omy Intrusion Detection Techniques
one monitoring node cannot be enough for intrusion detectio |4irusion detection systems must be able to distinguish

of misbehaving nodes. Let's consider again the example gfyeen normal and abnormal activities in order to discover
Figure 1 and suppose thdt is malicious. There are threemgjicious attempts in time. There are three main techniques

cases, arising from the wireless nature of communicatioRgar an intrusion detection system can use to classify @&tio
where having a nodel monitoring node3 cannot result in & 15]: misuse detection, anomaly detection and specifinatio

successful detection of node: based detection. Imisuse detectionr signature-based detec-

1) At the same time that nod® forwards its packet, tion systems, the observed behavior is compared with known
another nodes sends a packet td, causing a collision attack patterns (signatures). Action patterns that may @os
at A (the hidden terminal problem). Nodé cannot be security threat must be defined and stored to the system, Then
certain which packets caused this collision, so it canntite misuse detection system tries to recognize any “bad” be-
conclude onB’s behavior. havior according to these patterns. It is already concldiced

2) At the same time that nod8 forwards its packet to research in ad hoc networks that severe memory constraints
nodeC, node D also makes a transmission, causing make ID systems that need to store attack signatures rdiativ
collision atC. Node A thinks that B has successfully difficult to build and less likely to be effective [10].
forwarded its packet, since it doesn't know about the Anomaly detectionsystems focus on normal behaviors,
collision. Therefore, nodd3 could skip retransmitting rather than attack behaviors. First these systems describe
the packet, without being detected. what constitutes a “normal” behavior (usually established

3) Node B waits until C makes a transmission, and thery automated training) and then flag as intrusion attempts
transmit its packet causing a collision@t Again, node any activities that differ from this behavior by a statiatlg
C never receives the packet, but nadecannot accuse significant amount.



Finally, specification-basedetection systems are also baseHither we could use a cooperative mechanism or let nodes
on deviations from normal behavior in order to detect atackdecide independently.
but they are based omanually defined specifications that In anindependent decision-makisgstem, there are certain
describe what a correct operation is and monitor any behavitbdes that have the task to perform the decision-making
with respect to these constraints. This is the techniquesee dunctionality. They collect intrusion and anomalous atfiv
in our approach. It is easier to apply in sensor networkgesinevidences from other nodes and they make decisions about
normal behavior cannot easily be defined by machine learningtwork-level intrusions. The rest of the nodes do not par-
techniques and training. ticipate in this decision. For example, reviewing the aiexty

Since we follow the specification-based approach, we neggle proposed in [13] for ad-hoc networks, the cluster-Bead
to define which norms are going to be used to descrilggather information from their cluster members and maintain
normal operation. These specifications for detecting lalek a state machine for each one of them. Then the cluster-head
and selective forwarding attacks can simply be a rule on than decide with a certain confidence that a node has been
number of messages being dropped by a node. Each of ga¢npromised by looking at reports regarding that node.
watchdog nodes will apply that rule for itself to produce an |n such architectures, the decision-making nodes carcattra
intrusion alert. The naive approach would be to incrementige interest of an attacker, since compromising them would
counter every time a packet is dropped and produce an algéye the network undefended. Another drawback of such an
when this value reaches a threshold. However, we should t%ﬁﬁ)roach is that they restrict computation-intensive yasis
under consideration loss of messages due to other reasdngfahe overall network security state to just a few key nodes.
those described in Section IlI-A. So, this approach willsEu Thjs special mission of processing the information fromeoth
the counter of the watchdog nodes to increment and eveptuglbdes and deciding on intrusion attempts results in an extra
reach the threshold value. Then the node would be Charqﬂécessing overhead, which may qu|ck|y lead to energy ex-
without being malicious. haustion.

If we consider aate at which packets are being lost not by |, 5 cooperativelDS system, if an anomaly is detected by
a selective forwarding attack, but because of other leglitm 5 node, or if the evidence is inconclusive, then a cooparativ
factors in the network, then in case of an attack, the packgtz.chanism is initiated with the neighboring nodes in order t
will be dropped at a higher rate than they normally do. S0, Wioduce a global intrusion detection action. Even if a node
need to set a threshold of the rate at which packets are dlOpLe certain about the guiltiness of a suspicious node, $til t

and when this is reached an alarm can be generated. Fg@Eision should be cooperative, because, the node taking a
that, we substitute the counter criterion with a rate dot®r yecision could be malicious itself.

To measure a rate we need to keep track of time duratlon.In our approach, we use a cooperative decision making

Therefore we require each watchdog node to keep track of @ﬁproach, where the watchdog nodes of a litk — B
packets not peing forwarded yvithin a fixepl amount.of timec’ooperatein order to decide whether nodB is launching
lets sayw units, and we modify the intrusion detection rulea selective forwarding attack and take appropriate actions
as follows: Section IlI-A we explained why a node cannot make such
a decision on its own. So, we require that each node makes
Rule 1:“For each packet that a node A sends to node Bys final decision based on the alerts produced by all other
temporally buffer this packet and wait to see if node B fodsar ywatchdogs of the same link.
it. If not, increment a counter corresponding to that node B. |, grder to build a cooperative decision mechanism, we take
Else remove the packet from the buffer. If afterunits the 4yantage of the fact that all watchdog nodes of a link are
node has dropped more tharpercent of the packets, produc€jithin communication range of each other. That means any
an alert. ” watchdog node can listen to the messages broadcasted by the
rest. So, it is easy for these nodes to announce their alerts
So, each watchdog node has a windowuoinits, during to each other, by making a single message broadcast. With
which it creates statistics on the overheard packets. Aetfte this knowledge, each node can make a safer conclusion by
of each window an alert may be produced according to t@plying a majority rule:
threshold criterion, which is broadcasted by that node.nThe
the next window is started, and the same process is repeaﬁﬂe 2:“If more than half (i.e., the majority) of the watchdog
periodically, for all watchdog nodes. We do not require th:ﬁt ’

th d hronized the wind . h nod odes have raised an alert, then the target node (i.e. ioge
€ hodes are synchronized, so the WIndows In €ach Node @rk, \qiqjereq compromised and should be revoked, or the base
also not synchronized. They may have any time differen

between 0 ands units. &fation should be notified:

C. Decision Making Techniques In particular, for the link4d — B, we will define node4 as

The next design issue we need to solve is who is going ttoee responsible node to gather the alerts from the rest of the
make the final decision that a node is indeed an intruder andtchdogs and apply the majority rule. We call that node the
actions should be taken. There are two approaches for thisllector. The rest of the watchdogs do not need to activate
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Fig. 4. The building blocks of the IDS client existing in easdnsor node.

Fig. 3. Cooperative detection mechanism applied by theecwit. Each
window W starts at the reception of the first alert from any watchdog,

including the collector iself. In this exampléy = 2w. « Network Monitoring Every node performs packet mon-

itoring in their immediate neighborhood collecting audit
data.

« Decision Making Using this audit data, every node
decides on the intrusion threat level on a host-based basis.
Then they publish their findings to their neighbors and
make the final collective decision.

their cooperative detection engines for that link. So, theva
majority rule states that for watchdogs of a linkA — B, if
at least + 1 alerts are received by the collectdy including
its own local alert, then a decision is made that ndgles
compromised. The problem that arises next is how long the. Action Every node has a response mechanism that allow
collector should wait for the alerts.

. . . it to respond to an intrusion situation.
As we described in Section IlI-B, each watchdog node needs

w units to decide whether a node is dropping packets at aBased on these functions we build the architecture of the

higher rate than the normal. So, in order for the collector {§> client based on five conceptual modules, as shown in

receive the alerts from the rest of them, it has to wait sdrigure 4. Each module is responsible for a specific function,
which we describe in the sections below. The IDS clients

a longer interval ofi¥/ units. Since we do not require the _ e
watchdog nodes to be synchronized (see Figuréi@)must '€ identical in each node and they can broadcast messages
(f)or clients in neighboring nodes to listen. The communamati

be long enough in order to ensure that any possible alents fr ) o .
other watchdogs are received. In the worst case it has to bBOngst the clients allows us to use a distributed algorithm

little longer thatw, but in the experimental section we showfor the final decision on the intrusion threat.

how other values ofV affect the success of detection. Also L.

note that if during that period, a second alert from the sarfe Local Packet Monitoring

watchdog arrives, then that alert is ignored in the appbcat  This module gathers audit data to be provided to the local

of the majority rule. detection module. Audit data in a sensor network IDS system
With this majority rule, if a watchdog is compromised and¢an be the communication activities within its radio range.

issues a false alarm trying to revoke a legitimate nodesoieis This data can be collected by listeningomiscuouslyto

no alarms for another malicious node that launches an aitackeighboring nodes’ transmissions.

would have no effect because the majority would still prevai

However, if the collector itself is compromised, then th&. Local Detection Engine

adversary can gain the control of the intrusion result. Taicav

this scenario, we could have the rest of the watchdog noqg

apply the majority rule over the alerts they receive and khea

their conclusions with the collector’s report. Alternatiy we

could use a probabilistic version gérifiable agreementL6]

in which the majority vote contains a cryptographic prodtth

it was formed based on real alarms of the watchdogs.

This module collects the audit data and analyzes it accgrdin
S’given rules. As we said in Section IlI-B, specificatiorsbd
etection is most appropriate for sensor networks, so tta lo
detection engine stores and applies the defined specificatio
that describe what is a correct operation and monitors audit
data with respect to these constraints.

C. Cooperative Detection Engine
IV. BUILDING BLOCKS OF THEIDS CLIENT ) . . ) )
If there is an evidence of intrusion, this module broadcasts

In our discussion so far we have described all the opetthe state information of the local detection process to the
tions a sensor network IDS system should perform to detewtighboring nodes. The same module in each node collects
blackhole and selective forwarding attacks. In this sectiothis information from all the neighboring nodes and appées
we formalize our approach by presenting a more modularajority rule to conclude whether there is an intrusion or not.
architecture of the IDS system. We require that each nodeTihe input from the local detection engine is also counted in
the network has an IDS client with the following functiortali  for this conclusion.
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D. Local Response ‘ ‘ ‘ ‘ PR
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Once the network is aware that an intrusion has taken il
place and have detected the compromised area, appropriate “f 7
actions are taken by the local response module. The firgtracti st 1

is to cut off the intruder as much as possible and isolate
the compromised nodes. After that, proper operation of the
network must be restored. This may include changes in the
routing paths, updates of the cryptographic material (keys
etc.) or restoring part of the system using redundant infor-
mation distributed in other parts of the network. Autonomic
behavior of sensor networks means that these functions must
be performed without human intervention and within finite m
time. ‘ -

12 14 16 18 2 22

Depending on the confidence and the type of the attack, we Wi

categorize the response to two types:

« Direct response Excluding the suspect node from any

paths and forcing regeneration of new cryptographic keys

with the rest of the neighbors. dropped packets are less tharesulting in a false negative is
« Indirect responseNotifying the base station about thelower, and hence the better accuracy in detecting the attack

intruder or reducing the quality estimation for the link to \we see from Figure 5 that as the window length

that node, so that it will gradually loose its path reliaiili jncreases, the false negative probability decreases. Ehis
because the collector can have a more accurate estimation as
it gives more time to the watchdogs to produce their alarms.

We have simulated a sensor network16f)0 nodes placed However, we cannot takél’ to be a very large quantity,
uniformly at random in order to test our proposed intrusiosince that would delay the detection of a compromised node.
detection system. The network density was chosen so that edberefore, for the rest of the experiments we fiXéd= 2w.
node hadd neighbors on the average. Each time, we chose atNext we tested how the window length effects the accu-
random one linkA — B and programmed nodg to launch a racy on intruder identification. All watchdogs are requited
selective forwarding attack, while nodewas sending packets have the same window length. Given a steady packet rate, we
to it, at a given rate. This way we could have the watchdogseasure this length in number of packets. Figure 6 shows the
of that link A — B apply the intrusion detection and monitorfalse negative rate for different number of packets moador
the behavior of nodeB. With probability p;, node B was by the watchdogs. For longer windows, more packets are
dropping the packets that were forwarded to it. Finally, wie smonitored before the threshold rule is applied by a watchdog
the threshold value for the percentage of packets dropped oo produce a local alert. Then, for a fixed simulation time,
a periodw to t = 20%. Above this threshold, each watchdogve measured the number of final intrusion alerts produced by
was generating an alarm. Packets dropped at a lower rate wibe cooperative engine at the collector. For the given windo
attributed to other factors, such as collisions or nodeifas, W (= 2w), each watchdog gathers the alerts broadcasted by
and did not produce an intrusion alert. the rest of them and applies the majority rule to produce a

First we tested how the ratio of and w effects the final decision, as we described.
accuracy on intruder identification. The results are degict Figure 6 shows that the false negative rate is reduced as the
in Figure 5, for1000 repetitions of the experiment. As wewindow lengthw is increased. For biggew, more packets
said in Section IlI-C,/W must be bigger thanv, so we are monitored, and therefore, each watchdog has a better
did not simulate the case d¥/w < 1. False negativeate estimation of the drop rate and alerts are more successfully
represents the rate at which events are not flagged intrugpreduced resulting in a cooperative detection at the daliec
by the collector although the drop rate is higher than tHa the rest of the cases, the drop rate over the time period
threshold and the attack exists. If packets are dropped atoa a watchdog may be statistically below the threshold, and
rate higher than the threshaldthen ideally, all window$V at  no alert is produced. If this is true for more than half of the
the collector should give an alarm. However, since packets avatchdogs, the majority rule fails and no detection is made.
dropped probabilistically, there might be the case thaindur  Figure 7 depicts the number of alerts from the collector
a windoww of some watchdogs, the dropped packets are less a function of the drop probability;. Two thresholds of
thant = 20%, and no alert is produced by those nodes. The?)% and 10% have been assumed for the local detection at
the majority rule over a window?” will not be satisfied, which the watchdogs. In all experiments we todK = 2w. The
will give no final alarm, producing a false negative. simulation time is fixed forl000 repetitions and we sei

This is less probable to happen ag increases comparedto be long enough for 30 messages to be monitored at each
to t. In this case, the probability that during a windawthe watchdog. Note that the maximum number of final alerts
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Fig. 5. False-negative rate for different ratios of wind@mdthW to w.

V. EXPERIMENTAL EVALUATION
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decision on whether an attack has been launched. We focused
our research on routing because it is the foundation of senso
networks. In particular, we demonstrated how our IDS system
can be used to detect blackhole and selective forwarding
attacks, producing very low false-negative and falsetp@si
rates. We also provided a set of general principles that & ID
system for sensor networks should follow. We believe this se
of principles can be used as a valuable tool for developing
more robust and secure sensor networks in the future and
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Fig. 6. False-negative rate for different window lengihs [1]
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Fig. 7. Number of alerts for different drop probabilitipg.

(8]
that could be produced by the collector 1§, since this is [9]
the maximum number of window8/ that fit in the fixed
simulation time. For drop probabilities below the thresholg
a small number of alerts is produced. This is the number of
false positivesand ideally it should be zero. Since the packeﬁl]
are dropped probabilistically, there are cases where nhaire t
20% (or 10% respectively) of the packets are dropped, even
if the drop probability is lower. However, on the averag
the cooperative mechanism produces a small number of false
positives and this effect is shown clearly on smaller droHo
probabilities. For example, if we set the thresheld 20% 13]
and assume that packets are dropped at a lowepgate0.1,
then the graph indicates that the false positives willObe2,

which is a rate of).52 x 100/16 = 3.25%. (14]

VI. CONCLUSIONS

In this paper we have introduced a model for distribute%ﬂ
intrusion detection in sensor networks which is designed to
work with only partial and localized information availata¢ [16]
each node of the network. Nodes collaborate and exchargye thi
information with their neighbors in order to make a correct

enable further research in the area.
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